

UNIVERSIDAD NACIONAL DE LA PATAGONIA "SAN JUAN BOSCO"

FACULTAD DE INGENIERÍA

QUÍMICA

CURSO DE NIVELACIÓN DE QUÍMICA. NOMENCLATURA DE COMPUESTOS INORGÁNICOS

PROFESORES: Dra. Adelaida Ávila

Dra. Marta Luiz

JEFES DE TRABAJOS PRÁCTICOS Farm. Marcela De Alba

Dra. Marta Susana Díaz Bioq. Virginia Pasotti

2020

CONCURRIR A CLASE CON TABLA PERIÓDICA

Introducción

¿Conoces los símbolos de los elementos químicos? ¿Conoces la tabla periódica? ¿Sabes lo que representa una fórmula química? Pues bien vamos a repasar o, en algunos casos a aprender cada uno de esos conceptos en este apunte.

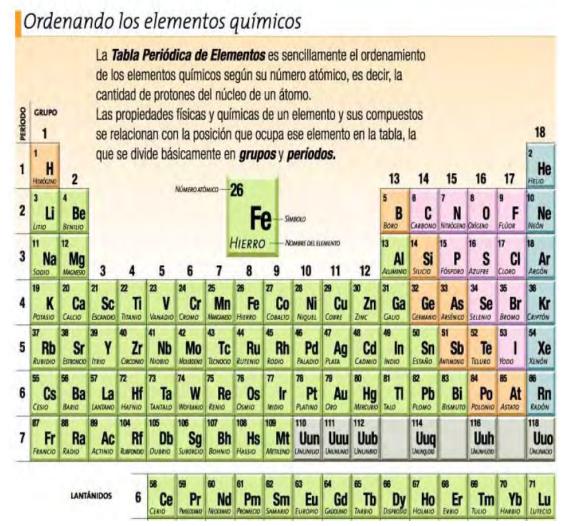
Las fórmulas químicas son el "lenguaje de la química" y a la vez nos dan una idea de la composición de las **sustancias**. Comenzaremos este curso de química introduciéndonos en la escritura y nomenclatura de los **compuestos químicos**. En química se usan abreviaturas para ahorrar tiempo y espacio cuando se escriben los nombres de los elementos. Cada elemento se representa mediante un **símbolo** exclusivo. Un **elemento químico** es una sustancia que no se puede separar en otras más simples mediante procedimientos químicos ordinarios. Los elementos son las sustancias básicas que constituyen la materia.

La mayor parte de los símbolos derivan del nombre del elemento, otros, de los nombres latinos o griegos. Se toma la primera o las dos primeras letras de dicho nombre. Repasemos alguno de ellos:

Nombre Latino o Griego	Símbolo	Nombre del elemento
Cloro	CI	Cloro
A rgentum	Ag	Plata
Ferrum	Fe	Hierro
Au rum	Au	Oro

A pesar de que la materia posee formas y características diversas, solamente existen más de cien **elementos químicos** conocidos hasta el momento y se encuentran reunidos en la **tabla periódica**. De éstos tan sólo 83 existen en forma natural sobre la Tierra; los otros han sido creados por los científicos en reactores nucleares. Imagínate si con 28 letras del alfabeto podemos formar

millones de palabras, cuántos compuestos químicos podremos formar por la combinación de los símbolos de los elementos. Un **compuesto** es una sustancia constituida por dos o más elementos combinados en proporciones fijas.


Combinando los símbolos de los elementos es como escribimos las fórmulas de los compuestos. ¿Alguna vez te has preguntado cómo hacen para ponerse de acuerdo los químicos al escribir las fórmulas de los compuestos? A partir de 1940 la IUPAC (Unión internacional de química pura y aplicada), algo así como la real academia de la lengua, pero para el lenguaje químico; dictó una serie de normas las cuales constituyen el sistema oficial internacional para escribir las fórmulas y nombrar a los compuestos químicos. La nomenclatura química es la aplicación de un conjunto de reglas que nos permiten asignar un nombre a cada compuesto químico. El nombre del compuesto indica algo acerca de su composición,

Te invitamos a mirar la Tabla Periódica observando los símbolos y el nombre correspondiente de cada elemento, poniendo especial atención en las cuatro primeras filas (llamadas períodos) que contienen los elementos más comunes.

Sustancias Simples

Se denominan sustancias simples a aquellas constituidas por uno o más átomos de un mismo elemento químico. El átomo es la muestra representativa más pequeña de un elemento. Sin embargo, sólo los gases nobles se encuentran normalmente en la naturaleza como átomos aislados.

Las sustancias simples, en general se nombran con el nombre del elemento constituyente, y su fórmula será el símbolo del elemento (Fe, Na, Cu, C, Xe, etc), excepto las siguientes **moléculas** gaseosas (H₂, N₂, O₂, O₃) y las de los **halógenos** (F₂, Cl₂, Br₂, I₂) que se presentan en forma **diatómica** o **triatómica**, y se nombran según la IUPAC con los prefijos di- o tri-, aunque es frecuente que aparezcan sin prefijos. Los átomos de estas moléculas cuando aparecen aislados llevan el prefijo mono-.

lones

Una buena proporción de toda la actividad química implica la transferencia de electrones entre elementos. Cuando un átomo gana o pierde un electrón se convierte en un ión. Un ión es un átomo o conjunto de átomos con carga eléctrica, positiva en el caso de los cationes y negativa en el caso de los aniones. El que un átomo tenga tendencia a perder o ganar electrones depende de su propia naturaleza. Los metales generalmente pierden electrones en el curso de reacciones para formar cationes.

Por ejemplo: Li \rightarrow Li⁺ + 1e⁻; Ca \rightarrow Ca²⁺ + 2e⁻.

Los no metales; elementos ubicados a la derecha de la tabla periódica con frecuencia ganan electrones en el curso de reacciones para formar aniones. Por ejemplo: Cl + 1e⁻→ Cl⁻¹; O + 2e⁻→ O⁻². Los no metales del grupos 16 ganan 2 electrones para formar aniones con carga -2 y los del grupo 17 ganan 1 electrón para formar aniones con carga -1.

Veremos a continuación el concepto de número de oxidación, que nos ayudará a nombrar los compuestos químicos.

En química para representar que un átomo o un conjunto de ellos tienen carga, es decir, es un ión se representa el símbolo del elemento o del ión poliatómico acompañado de un **superíndice** en la parte derecha con la carga correspondiente, que puede ser positiva o negativa. Ej: Li^{+1} , Cl^{-1} , Fe^{+3} , SO_4^{-2}

Números de Oxidación

Los números de oxidación se pueden deducir fácilmente aplicando las siguientes reglas:

- 1- El número de oxidación de una sustancia en estado libre (no combinada) es cero. Así, cada átomo en H₂, Br₂, Na, K, S₈ tienen número de oxidación **cero**.
- 2- El número de oxidación de un **ión monoatómico** coincide con su carga. Ej el número de oxidación de Mg⁺² es +2 y del F⁻¹ es -1.
- 3- El número de oxidación del oxígeno es -2 salvo en sus sustancias simples (en las cuales es cero), los peróxidos (en las cuales es -1, Na_2O_2).
- 4- El número de oxidación del hidrógeno es +1, salvo en su sustancia simple y en los hidruros metálicos (en las cuales es –1, NaH)
- 5- En los **iones poliatómicos** la suma algebraica (suma teniendo en cuenta la cantidad de cada elemento presente en la fórmula y el número de oxidación de cada uno) de los números de oxidación coincide con la carga del ión.
 - Ej. Sabiendo que la fórmula del ión perclorato es ClO_4^{-1} y el número de oxidación del oxígeno (regla 3) es -2 podemos calcular el número de oxidación del cloro (que llamaremos x) haciendo la siguiente suma algebraica:

1.
$$x + 4$$
. (-2) = -1 $\Rightarrow x = +7$

Podemos ver que el número de oxidación del cloro en el ión CIO₄-1 es +7

- 6- En los compuestos neutros la suma algebraica de los números de oxidación es **cero**
 - Ej. Si aplicamos la regla para el compuesto HClO₄. Sabemos que el número de oxidación del hidrógeno es +1 (regla 4), del oxígeno es -2 (regla 3) y el del cloro +7 (ejemplo anterior), entonces:

$$1. (+1) + 1. (+7) + 4. (-2) = 0$$

La nomenclatura en química inorgánica se basa en la atribución de números de oxidación a los átomos de los elementos. El número de oxidación de un átomo representa el número de cargas (positivas, negativas o cero) que tendría un átomo en un compuesto si los electrones de la unión fueran transferidos completamente. El número de oxidación es útil para realizar una contabilidad, pero en la mayoría de los casos esta transferencia es ficticia. La asignación se realiza a partir de un conjunto de reglas convencionales.

lones monoatómicos y poliatómicos

De acuerdo a la IUPAC los iones se clasifican en 4 categorías diferentes: Cationes y aniones (dependiendo su carga); monoatómicos y poliatómicos (de acuerdo a la cantidad de átomos que constituyen el ión).

Ejercicios resueltos:

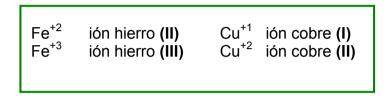
Clasificar cada uno de los iones como cationes o aniones; monoatómicos o poliatómicos

a. Al⁺³

b- S⁻²

c. NH_4^{+1} d. PO_4^{-3}

Respuesta:


- a. Al⁺³ es un ión con carga positiva, por lo que es un catión monoatómico
- b. S⁻² es un ión con carga negativa, por lo que es un anión monoatómico
- c. NH₄⁺¹ es un catión poliatómico por ser una partícula con más de un átomo y poseer carga positiva
- d. PO₄-3 es un anión poliatómico por ser una partícula con más de un átomo con carga negativa

Examinemos primero la nomenclatura de los iones para luego ver la forma de agrupar los nombres de los mismos para identificar el compuesto iónico completo.

Nomenclatura de Cationes

Según las normas IUPAC, para nombrar los cationes se utiliza el nombre del átomo del que proceden, precedido de la palabra ión. Así Na⁺ es el ión sodio y el Mg⁺² es el ión magnesio. Los metales de los grupos 1, 2 y 3 de la tabla periódica forman cationes monoatómicos en condiciones habituales (Fig 1).

Si un metal puede formar cationes con diferente carga, la carga positiva se indica con un número romano entre paréntesis después del nombre del metal:

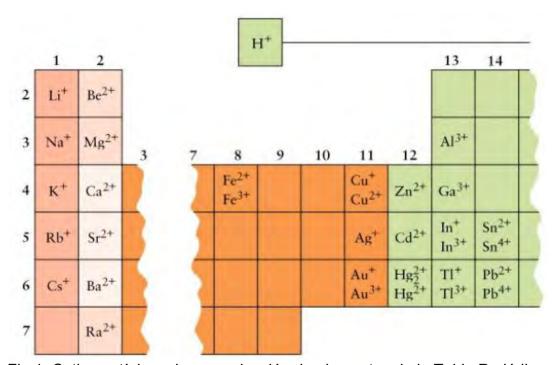


Fig 1: Cationes típicos de una selección de elementos de la Tabla Periódica:

Este procedimiento se denomina método sistemático o también sistema Stock, en memoria del químico alemán Alfred Stock, por su valioso aporte a la elaboración de las normas sistemáticas de la nomenclatura.

También se puede utilizar un sistema más antiguo, el llamado sistema latino o sistema de sufijos; en éste se usa el nombre latino del metal seguido de las

terminaciones *oso* e *ico* para distinguir entre los dos iones. Estas terminaciones representan los iones con menor y mayor carga respectivamente.

Fe ⁺²	ión ferr oso	Cu ⁺¹ ión cupr oso
Fe ⁺³	ión férr ico	Cu ⁺² ión cúpr ico

Existe un sólo catión poliatómico de uso común que es el ión amonio NH_4^{+} .

Nomenclatura de Aniones

Los no metales forman aniones monoatómicos en condiciones habituales (Fig 2). Los **aniones monoatómicos** se nombran manteniendo la raíz del nombre del no metal y se añade el **sufijo uro**, en el caso del oxígeno la terminación es **ido**. Así F⁻¹ es el ión fluor**uro**, S⁻² es el ión sulf**uro**, O⁻² es el ion óx**ido**.

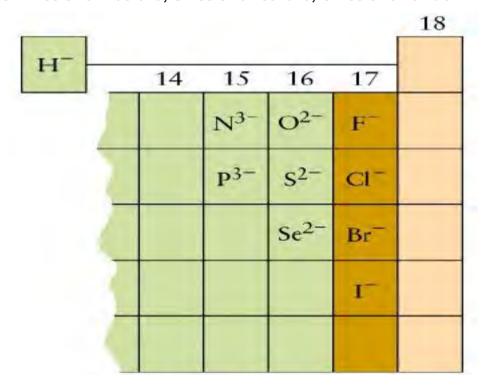


Fig 2: Aniones monoatómicos típicos de una selección de elementos en la tabla periódica. Nótese como la carga de cada ión depende de su número de grupo.

Los aniones poliatómicos en general contienen oxígeno y se les denomina oxianiones. Es frecuente que un elemento forme más de un oxianión y, cuando esto sucede existen reglas para poder indicar el número relativo de

átomos de oxígeno. En el caso de que el elemento forme tan sólo dos oxianiones, el nombre del que posee el menor número de átomos de oxígeno termina en **ito** y el del que tiene más oxígeno finaliza en **ato**. Así:

$$SO_3^{-2}$$
 ión sulf**ito** NO_2^{-1} ión nitr**ito** SO_4^{-2} ión sulf**ato** NO_3^{-1} ión nitr**ato**

Cuando el número de oxianiones de una serie que forma un elemento es superior a dos, se utilizan los prefijos **hipo**- (menos que) y **per**- (más que) para nombrar los miembros de la serie que contienen, respectivamente, el menor y el mayor número de átomos de oxígeno de la serie. La serie de oxianiones que forma el átomo de cloro sirve para ilustrar:

```
CIO^{-1} ión hipoclorito (un oxígeno menos que el clorito)
CIO_2^{-1} ión clorito
CIO_3^{-1} ión clorato
CIO_4^{-1} ión perclorato (un oxígeno más que el clorato)
```

El sistema Stock de nomenclatura establece que se nombran todos los aniones con la terminación **ato** y se coloca el estado de oxidación del no metal en números romanos entre parentésis, por ejemplo:

CIO ⁻¹	ión clor ato (I)	SO ₃ -2	ión sulf ato (IV)
CIO ₂ -1	ión clor ato (III)	SO ₄ ⁻²	ión sulf ato (VI)
CIO ₃ -1	ión clor ato (V)	NO_2^{-1}	ión nitr ato (III)
CIO ₄ ⁻¹	ión clor ato (VII)	NO_3^{-1}	ión nitr ato (V)

Algunos iones poseen cargas suficientes para incorporar uno o más iones hidrógeno (H⁺), sin dejar de ser aniones, aunque lógicamente, con carga inferior a la original. Estos iones se nombran anteponiendo el término hidrógeno o dihidrógeno, según el caso, al nombre del ión libre de hidrógeno, aunque se puede nombrar con el prefijo bi.

HCO₃⁻¹ ión hidrógeno carbonato o bicarbonato
HSO₄⁻¹ ión hidrógeno sulfato o bisulfato
H₂PO₄⁻¹ ión dihidrógeno fosfato

Otro sistema de nomenclatura los nombra como derivados de ácido, es decir, el ión HCO_3^{-1} se nombra carbonato ácido y el ión $H_2PO_4^{-1}$ sería el fosfato diácido (por presentar dos iones hidrógeno).

Una vez que conocemos los nombres de los cationes y aniones, estamos en condiciones de poder asumir la tarea de asignar un nombre a los compuestos que se pueden formar mediante la combinación de cualquiera de estas especies.

Tabla 1: lones poliatómicos más comunes

Fórmula	Nombre del ión	Fórmula	Nombre del ión
CATIÓN NH₄ ⁺ H ⁺	Amonio Hidrógeno		
ANIONES Grupo 14 (IV A) CN CO ₃ ² HCO ₃	Cianuro Carbonato Hidrógeno Carbonato (bicarbonato)	Grupo 15 (V A) NO ₂ NO ₃ PO ₄ HPO ₄ H ₂ PO ₄	Nitrito Nitrato Fosfato Fosfato ácido Fosfato diácido
Grupo 16 (VI A) OH - SO ₃ -2 SO ₄ -2 HSO ₄ -	Hidróxido Sulfito Sulfato Sulfato ácido (bisulfato)	Grupo 17 (VII A) CIO	Hipoclorito Clorito Clorato Perclorato
Metales de Transición CrO ₃ -2 CrO ₄ -2 Cr ₂ O ₇ -2 MnO ₄ -1 MnO ₄ -2	Cromito Cromato Dicromato Permanganato Manganato		

Por el momento; nuestro esfuerzo se debe concentrar en tratar de memorizar todos y cada uno de los nombres y símbolos de los iones, con sus correspondientes estados de oxidación.

Es importante aprender las fórmulas de aniones y cationes para poder escribir correctamente los compuestos. La mejor forma de adquirir práctica en la escritura de compuestos químicos es escribir primero el compuesto consultando las tablas y, luego intentar solos.

Clasificación de los compuestos Inorgánicos

Antes de utilizar las normas, aplicándolas para asignar un nombre específico a cada compuesto, es necesario que distingamos entre los distintos tipos de compuestos existentes. Existen tres clases perfectamente diferenciadas de compuestos inorgánicos: iónicos, moleculares y ácidos acuosos, cada una con características diferenciales propias que dan como resultado global la existencia de diferentes tipos o categorías de compuestos que iremos analizando por separado.

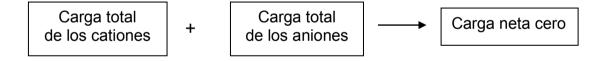
Todo compuesto químico posee carga neta cero, lo cual significa que en el mismo compuesto están presentes simultáneamente cationes y aniones y además, el número de estas especies es tal, que la carga neta tiene que ser igual a cero.

Nomenclatura de Compuestos

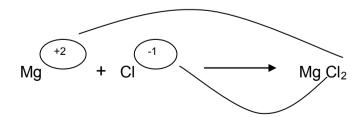
Lavoisier propuso que el nombre de un compuesto debía describir su composición, y es esta norma la que se aplica en los sistemas de nomenclatura química.

Comenzaremos explicando el sistema para la nomenclatura de compuestos binarios, es decir; aquellos que están formados por dos elementos. Los

compuestos binarios se pueden dividir en dos clases amplias: Compuestos que contienen un metal y un no metal y compuestos que contienen dos no metales.


Nomenclatura de Compuestos binarios que contienen un metal y un no metal (Tipo I y II)

Los **compuestos iónicos binarios** están formados por dos elementos, un metal y un no metal; ejemplo de este tipo de compuestos son KCl, Pbl₂ o Al₂O₃.


Compuestos Binarios Tipo I

Son compuestos iónicos formados por metales que sólo forman un catión y un no metal, por ejemplo el compuesto formado por el catión sodio (Na⁺¹) y el anión sulfuro (S⁻²).

No es difícil escribir la fórmula de un compuesto iónico si conocemos las cargas de los iones que lo constituyen. Los iones de un compuesto iónico siempre están presentes en una proporción tal que:

Así debe haber un Mg⁺² por cada dos Cl⁻¹ para formar el MgCl₂ (cloruro de magnesio). Si las cargas no son iguales, la carga de un ión (sin su signo) se convertirá en el subíndice del otro ión.

La IUPAC establece que se debe escribir en primer lugar el ión positivo, seguido del ión negativo. Para nombrarlos se invierte el orden; es decir primero

se nombra el anión y a continuación se nombra el catión con la palabra **de** en medio.

Por ejemplo para escribir la fórmula del compuesto sulfuro de plata, compuesto iónico binario formado por los iones plata y sulfuro hacemos:

$$Ag^{+1}$$
 + S^{-2} \longrightarrow Ag_2S
Ión plata ión sulfuro sulfuro de plata

En este grupo debemos incluir a los **hidruros metálicos** (catión metálico + anión hidrógeno).

Se les nombra con la palabra genérica "hidruro" seguida del nombre del metal. El estado de oxidación del hidrógeno es -1. Se forma con metales muy electropositivos.

EJEMPLO 1:

Fórmula	Nombre
LiH	hidruro de litio
NaH	hidruro de sodio
AIH_3	hidruro de aluminio

Ejercicios resueltos:

Indicar el nombre y los iones que forman a cada uno de los compuestos iónicos binarios cuya fórmula se indica a continuación:

Resolución:

Compuesto	lones presentes	Nombre
a- Na₂O	Na ⁺¹ y O ⁻²	óxido de sodio
b- AIBr ₃	Al ⁺³ y Br ⁻¹	bromuro de aluminio
c- CsCl	Cs ⁺¹ y Cl ⁻¹	cloruro de cesio

d- MgS

sulfuro de magnesio

Compuestos Binarios Tipo II

Diversos metales pueden formar más de un tipo de catión, por ejemplo; el plomo (Pb) puede formar Pb⁺² y Pb⁺⁴ en compuestos iónicos. Esto significa que si se ve el nombre cloruro de plomo, no se sabrá si se refiere al compuesto PbCl₂ o PbCl₄. Por tanto se necesita una manera de especificar cuál catión está presente en los compuestos que contienen metales que pueden formar más de un tipo de catión. Esto se resuelve utilizando el numeral de Stock. Así el PbCl₂ se nombra, cloruro de plomo (II) y el PbCl₄, cloruro de plomo (IV). Recordar que el número romano indica la carga del catión.

Existe otro sistema para la nomenclatura de compuestos iónicos que contienen metales que forman dos cationes. El ion con la carga más alta tiene un nombre que termina en **ico** y el que tiene la carga más baja tiene un nombre que termina en **oso**. En este sistema los compuestos de plomo del ejemplo se nombrarían: cloruro plumboso (PbCl₂) y cloruro plúmbico (PbCl₄).

Ejercicios resueltos:

Indicar el nombre y los iones que forman a cada uno de los compuestos iónicos binarios cuya fórmula se indica a continuación:

- a) Au₂O
- b) FeBr₃
- c) SnCl₂
- d) CuS

Resolución:

Compuesto	o lones presentes	Nombre Stock	Nombre antiguo
a- Au ₂ O	Au ⁺¹ y O ⁻²	óxido de oro (I)	óxido aur <mark>oso</mark>
b- FeBr ₃	Fe ⁺³ y Br ⁻¹	bromuro de hierro (III)	bromuro férr <mark>ico</mark>
c- SnCl ₂	Sn ⁺² y Cl ⁻¹	cloruro de estaño (II)	cloruro estañoso
d- CuS	Cu ⁺² y S ⁻²	sulfuro de cobre (II)	sulfuro cúpr <mark>ico</mark>

El uso de números romanos en un nombre sistemático para un compuesto sólo se requiere en casos donde se forman más de un compuesto iónico entre un par de elementos dados. Los metales que forman un solo catión no necesitan identificarse por medio de un número romano.

Compuestos Binarios Tipo III

Una molécula puede definirse como un agregado de dos o más átomos unidos entre sí mediante enlaces químicos. Los compuestos moleculares están formados exclusivamente por no metales. En los compuestos moleculares la partícula individual más pequeña que conserva las propiedades del compuesto es su molécula. En los compuestos iónicos también es la molécula; pero dicha molécula está constituida por iones.

El conjunto de átomos que constituye una molécula se comporta como una unidad independiente.

Un compuesto molecular binario es aquel formado por dos no metales: H₂O, NH₃, CO₂, CH₄, son ejemplos representativos de este grupo. Para indicar la fórmula molecular de compuestos moleculares binarios, por lo general, se escribe primero el nombre del elemento que está más a la derecha en la tabla periódica (más no metálico). Una excepción sería para los compuestos que tienen oxígeno. El oxígeno se escribe siempre al último salvo cuando se combina con flúor. Para nombrar este tipo de compuestos se sigue el mismo criterio general que en el caso de los compuestos iónicos: el segundo elemento se nombra en primer lugar añadiéndole el **sufijo uro** y, a continuación, separado por la preposición de, se nombra el segundo elemento.

Los compuestos binarios que sólo contienen no metales se nombran de acuerdo con un sistema similar en ciertas formas a las reglas para la nomenclatura de compuestos iónicos binarios, pero existen diferencias importantes. Se utilizan prefijos para indicar los números de átomos presentes.

El número de átomos de cada elemento se especifica mediante los prefijos griegos que se indican en la tabla 2. Así el N_2O_3 se nombra **tri**óxido de **di**nitrógeno. El prefijo mono se omite siempre que sea posible y tan sólo se incluye cuando es necesario para evitar confusión.

Tabla 2. Prefijos utilizados para indicar el número de átomos en los compuestos moleculares

Prefijo	N° de átomos	Prefijo	N° de átomos
Mono	1	Неха	6
Di	2	Hepta	7
Tri	3	Octa	8
Tetra	4	Nona	9
Penta	5	Deca	10

El prefijo mono nunca se utiliza para nombrar el segundo elemento. Por ejemplo, al CO se le llama monóxido de carbono; y no monóxido de *monocarbono.*

Así, por ejemplo el compuesto NO se denomina monóxido de nitrógeno y el N₂O óxido de dinitrógeno, omitiendo en este último caso el prefijo mono- para el óxido porque no es necesario.

Es importante darse cuenta de que **no** podemos predecir las fórmulas de la mayor parte de las sustancias moleculares de la misma forma como predecimos las de los compuestos iónicos.

EJEMPLO1

Indicar el nombre de cada uno de los compuestos cuya fórmula se indica a continuación

a) CCl_4 b) Cl_2O_5 c) P_2O_3

Respuesta:

- a. Tetracloruro de carbono
- b. Pentóxido de dicloro u Óxido clórico
- c. Trióxido de difósforo u Óxido fosforoso

EJEMPLO2:

Fórmula	Nomenclatura antigua	Nomenclatura moderna
SiO ₂	óxido silícico	dióxido de silicio
P ₂ O ₃	óxido fosforoso	trióxido de difósforo
P ₂ O ₅	óxido fosfórico	pentóxido de difósforo
Cl ₂ O	óxido hipocloroso	monóxido de dicloro
Cl ₂ O ₃	óxido cloroso	trióxido de dicloro
Cl ₂ O ₅	óxido clórico	pentóxido de dicloro
Cl ₂ O ₇	óxido perclórico	heptóxido de dicloro

Ejercicios resueltos:

Nombre los siguientes compuestos moleculares binarios cuya fórmula se indica a continuación:

a) SO₃

b) N₂O₅

c) PCI₅

d) CCI₄

Resolución:

Compuesto	NombreModerno	Nombre antiguo
a- SO ₃	trióxido de azufre	óxido sulfúr <mark>ico</mark>
b- N ₂ O ₅	pentóxido de di nitrógeno	óxido nítr <mark>ico</mark>
c- PCI ₅	pentacloruro de fósforo	
d- CCl ₄	tetracloruro de carbono	

Primera Actividad: Te invitamos a realizar los ejercicios propuestos y consultar las dudas con los docentes en las clases de apoyo.

Glosario de términos

Anión: ión con carga negativa

Átomo: la partícula más pequeña representativa de un elemento.

Binario: que tiene dos componentes.

Catión: ión con carga positiva

Compuesto inorgánico: un compuesto que no es orgánico.

Compuesto iónico: compuesto formado por cationes y aniones.

Compuesto molecular: compuesto formado por moléculas.

Compuesto orgánico: aquel que contiene al elemento carbono, normalmente en combinación con los elementos hidrógeno, oxígeno, nitrógeno y azufre

Electrón: (e-) partícula subatómica con carga negativa que se encuentra fuera del núcleo de un átomo.

Gases nobles: miembros del Grupo 18/VIII de la tabla periódica.

Halógenos: elementos del Grupo 17/VII de la tabla periódica

lón: átomo o grupo de átomos que tiene carga eléctrica.

lon monoatómico: ión formado por un solo átomo. Ejemplos: Na⁺; Cl⁻.

lon poliatómico: ión en donde más de dos átomos están unidos por enlaces covalentes. Ejemplos: NO₃-, NH₄+.

Metal: sustancia que conduce la electricidad, tiene un brillo metálico, es maleable y dúctil, forma cationes y tiene óxidos básicos.

Molécula: grupo de átomos enlazados que existe como una entidad independiente y tiene propiedades físicas y químicas propias.

Molécula diatómica: molécula formada por sólo dos átomos.

Molécula triatómica: molécula constituida por tres átomos.

No metal: sustancia que no conduce la electricidad y no es maleable ni dúctil.

Ejemplos: todos los gases, fósforo.

Símbolo químico: abreviatura de una o dos letras que se utilizan para designar los nombres de los elementos químicos.

Subíndice: Letra o número de pequeño tamaño que se coloca en el lado derecho y en la parte de abajo de un signo gráfico para indicar algo.

Sufijo: Letras que se agregan a una raíz para formar una palabra. Ej: tubercul**osis**, parasit**osis** (sufijo: osis, significa enfermedad)

Superíndice: Letra o número de pequeño tamaño que se coloca en el lado derecho y en la parte de arriba de un signo gráfico para indicar algo.

Sustancia: porción de materia cuyos componentes no se pueden separar por procedimientos físicos. Su composición y propiedades son las mismas en cualquier punto de la muestra.

Tabla periódica: cuadro en el que los elementos están ordenados de menor a mayor número atómico, divididos en grupos y períodos, de tal modo que los elementos con propiedades similares queden en la misma columna.

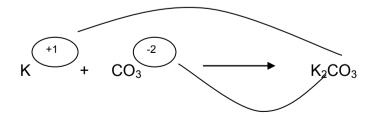
PRIMERA ACTIVIDAD:

1 Clasificar	cada ur	no de los	iones,	como	aniones	o cationes;	monoatómicos	; O
poliatómicos	•							

- a) Cl^{-} b) Ca^{2+} c) NH_4^{+} d) NO_3^{-} e) SO_4^{2-} f) Li^{+}
- **2**.- Nombre los siguientes iones: a) Br^{-1} b) Pb^{+2} c) K^{+1} d) F^{-1} e) O^{-2} f) H^{+1} h) S^{-2}
- **3.-** I. Indique la fórmula y carga de cada ión que constituye cada uno de los siguientes compuestos:
- a) $BaCl_2$ b) Na_2S c) KI d) CaO e) Fe_2O_3 f) Na_2O g) SnO h) CuO i) CaH_2
- II. Nombre cada uno de los compuestos
- **4.-** a) Escriba la fórmula de todos los compuestos neutros que pueda formar al combinar los cationes sodio y magnesio con los aniones óxido y sulfuro.
- b) Nombrar cada uno de los compuestos obtenidos.
- 5.- Nombre los siguientes compuestos iónicos binarios:
- a) KI b) NaH c) AlCl₃ d) CuO e) Ag₂O f) FeBr₂
- g) SnCl₄ h) FeS i) Cu₂O j) Au_2S_3
- 6.- Escriba la fórmula de:
- a) óxido áurico b) óxido de cobre (I) c) sulfuro de cinc

d) cloruro de	hierro (III)	e) yoduro de	plata	f) hidruro (de potasio	
7 Nombre I	os siguientes	compuestos	binarios m	noleculares		
a) N ₂ O ₃	b) SiO ₂	c) CS ₂	d) NH ₃	e) Cl ₂ O ₇	f) MnO	2
8 De los co	mpuestos qu	e se citan a c	ontinuacio	ón indicar d	cuáles es o	de esperar
que sean mo	oleculares y n	ombrarlos a to	odos:			
a) M	gCl ₂	b) CO ₂	c) PCI ₅		d)SO ₃	e) N ₂ O ₃
9Escribir la	fórmula de:					
a) he	ptóxido de di	manganeso	b)	trióxido de	dicloro	
c) dis	ulfuro de carb	ono	d)	amoníaco		
10 Dé el no	ombre de los	compuestos s	iguientes:			
a) AlF	₃ b) NO ₂	c) Br ₂ O	d) Cl ₂ O ₇			
		Ejercicios	Propues	stos		
1. La fórmula	a química del	óxido de sodi	o es Na ₂ C	D. Utiliza la	tabla peri	ódica para
predecir la fo	órmula de los	siguientes co	mpuestos	similares:		
a) óxido (de potasio b) sulfuro de po	otasio c)	óxido de li	tio d) sulfi	uro de litio
2. Escriba y	nombre el d	compuesto ió	nico form	ado entre	el ión flúo	or y el ión
aluminio						
3. De las fo	órmulas MgC	ا ₂ y MgCl ₄ , ز	.cuál es l	la correcta	para el	cloruro de
	Justifique su e					
4. Escriba la	fórmula de lo	s siguientes o	compuesto	os iónicos l	oinarios:	
a) cloruro de	estroncio b	o) óxido de es	taño (IV)	c) fluoruro	de sodio	
d) sulfuro de	magnesio					

- **5.** Escribe la fórmula del/(de los) compuesto(s) formados a partir de cada uno de los siguientes pares de elementos:
- a) magnesio y bromo
- b) oro y cloro
- c) estroncio y oxígeno


- d) aluminio y azufre
- e) hierro y oxígeno
- **6.** Indique cuáles de los compuestos iónicos binarios de los ejercicios 4 y 5 son sales y cuáles óxidos básicos.
- 7.-. Escribe la fórmula de los siguientes compuestos moleculares
- a) tricloruro de nitrógeno
- b) pentóxido de diyodo
- c) trióxido de azufre
- d) heptóxido de dicloro

Nomenclatura de Compuestos que contienen iones poliatómicos

Un **compuesto iónico ternario** contiene tres elementos, de los cuales uno al menos tiene que ser un metal; a este grupo pertenecen compuestos iónicos tales como NaOH, AgNO₃, CaSO₄. Se pueden clasificar en:

1) hidróxidos 2) sales ternarias ú oxisales

Todas las normas dadas anteriormente son igualmente válidas para los compuestos iónicos formados por iones poliatómicos. Así la fórmula del compuesto (oxisal) formado por los iones potasio K⁺ y carbonato CO₃⁻² es:

Ahora, para escribir la fórmula del compuesto carbonato de sodio que es un compuesto iónico ternario (oxisal) formado por iones sodio e iones carbonato, hacemos:

$$Na^{+1}$$
 + CO_3^{-2} \longrightarrow Na_2CO_3
Ión sodio + ión carbonato carbonato de sodio

(al invertir las cargas del catión (+1) y el anión (-2), el 1 se sobreentiende por eso no se indica en la formula)

Para nombrarlos se invierte el orden; es decir, primero se nombra el anión y a continuación, se nombra el catión

Otro ejemplo:

$$Al^{+3}$$
 + SO_4^{-2} \longrightarrow $Al_2(SO_4)_3$
Ión aluminio + ión sulfato Sulfato de aluminio

1. HIDRÓXIDOS

Desde el punto de vista de su fórmula química, los hidróxidos pueden considerarse formados por un metal y el anión monovalente OH⁻¹ (ión hidróxido u oxhidrilo). Por lo tanto, la formulación de los hidróxidos sigue la misma pauta que la de los compuestos iónicos binarios.

La fórmula general de los hidróxidos es: M(OH)n, donde "n" indica el estado de oxidación del metal.

Para nombrar los hidróxidos se utiliza la palabra "hidróxido" seguida del nombre del metal, indicando con número romano el estado de oxidación del metal, cuando esté presente más de un estado de oxidación.

EJEMPLO 1

Escribir la fórmula del hidróxido de magnesio.

Resolución:

Como su nombre lo indica está formado por el ión magnesio (Mg⁺²) y el ión hidróxido (OH⁻¹):

$$Mg^{+2} + OH^{-1} \longrightarrow Mg(OH)_2$$

EJEMPLO 2:

Nombrar los siguientes compuestos:

Fórmula	Nomenclatura antigua	antigua Nomenclatura de Stock	
KOH	hidróxido de potasio	hidróxido de potasio	
Ca(OH) ₂	hidróxido de calcio	hidróxido de calcio	
Fe(OH)2	hidróxido ferroso	hidróxido de hierro (II)	
Fe(OH)₃	hidróxido férrico	hidróxido de hierro (III)	

2. OXISALES

El procedimiento para establecer la fórmula de una sal ternaria, es análogo al utilizado para las sales binarias, la diferencia fundamental radica en que en este caso el anión es poliatómico y contiene oxígeno en su fórmula. Una forma simple de determinar la fórmula de la sal es la siguiente:

EJEMPLO 3

Escribir la fórmula del sulfato férrico y del nitrato de sodio

Resolución: Ambas sales están formadas por iones (consultar en la tabla 1 la fórmula de los iones):

1)
$$Sn^{+4} + SO_4^{2-} \longrightarrow Sn(SO_4)_2$$
Ión estáñico + Ión sulfato sulfato estáñico

2) $Na^{+1} + NO_3^{1-} \longrightarrow NaNO_3$
ión sodio + Ión nitrato nitrato de sodio

EJEMPLO 4

Nombrar las siguientes oxisales

Fórmula	Nomenclatura antigua	Nomenclatura de Stock
FeSO ₄	sulfato ferroso	sulfato (VI) de hierro (II)

KMnO ₄	permanganato de potasio	manganato (VII) de potasio
$AI(CIO_4)_3$	perclorato de aluminio	clorato (VII) de aluminio
Pb(CO ₃) ₂	carbonato plúmbico	carbonato (IV) de plomo (IV)
Cu ₃ (PO ₄) ₂	fosfato cúprico	fosfato (V) de cobre (II)
HgCrO ₄	cromato mercúrico	cromato (VI) de mercurio (II)
K ₂ Cr ₂ O ₇	dicromato de potasio	dicromato (VI) de potasio

Ejercicios resueltos:

Indicar el nombre de cada uno de los compuestos cuya fórmula se indica a continuación:

a) NaOH b) Cu(NO₃)₂ c) Fe(OH)₃ d) MgSO₃

Resolución:

- a- Hidróxido de sodio
- b- Nitrato cúprico o nitrato (V) de cobre (II)
- c- Hidróxido férrico o hidróxido de hierro (III)
- d- Sulfito de magnesio o sulfato (IV) de magnesio (II)

Glosario de términos

Oxianión: anión poliatómico que contiene un no metal como CI, N, P o S, en combinación con cierto número de átomos de oxígeno. Un oxianión se deriva de un oxiácido.

Reacción química: cambio químico en el cual una sustancia responde a la presencia de otra, a un cambio de temperatura, o a alguna otra influencia.

Segunda Actividad: Te invitamos a realizar los ejercicios propuestos y consultar las dudas con los docentes en las clases de apoyo.

SEGUNDA ACTIVIDAD:

- 1.- Nombre correctamente los siguientes compuestos (consultar tabla 1):
- a) Cu(OH)₂
- b) AgOH
- c) Zn(OH)₂
- d) $Mg(HCO_3)_2$

- e) Ba(OH)₂
- f) $Fe_2(CO_3)_3$
- g) Li₂SO₃
- h) NaClO

- i) KMnO₄
- j) Ca₃(PO₄)₂
- k) $(NH_4)_2SO_3$
- I) $Hg(NO_3)_2$
- **2.-** Con la ayuda de la tabla 1 y la tabla periódica prediga la fórmula y el nombre del compuesto formado por los siguientes iones:
- a) Calcio y carbonato
- b) amonio y cloruro
- c) Magnesio y fosfato

- d) Perclorato y sodio
- e) Bisulfato y potasio
- f) hidróxido y plata
- **3.** I. Indique la fórmula, y carga de cada ión que constituye cada uno de los siguientes compuestos:
 - a) (NH₄)₃PO₄
- b) Ca(ClO)₂
- c) Al(OH)₃

d) NaHSO₄

- e) KNO₂
- f) KH₂PO₄

- II. Nombre cada compuesto
- **4.** Escriba las fórmulas de todos los compuestos neutros que pueden formarse combinando los cationes calcio y amonio con los aniones nitrato y cromato. Nombrar cada uno de los compuestos obtenidos.
- 5.- Complete la siguiente tabla:

Nombre	Fórmula del Compuesto	Iones que contiene
	KMnO₄	
		Ca ⁺² y NO ₂ ⁻¹
Hidróxido de amonio		
	Na ₂ Cr ₂ O ₇	
Cromato férrico		
		Pt ⁺⁴ y CIO ⁻¹
Carbonato ácido áurico		

d) iones Cu (I) y carbonato

Ejercicios Propuestos

1. Escribir la fórmula del compuesto que se forma a partir de los siguientes pares de iones

h) iones Fe (III) y nitrato

- a) iones potasio y dicromato
 b) iones amonio e hidróxido
 c) iones Pb (II) y sulfito
 e) iones sodio y nitrito
 f) iones calcio y fosfato
 g) iones plata y clorato
- 2. Escribe la fórmula de cada uno de los siguientes compuestos

a) sulfato de amonio
b) hidróxido de bario
c) sulfato ácido de sodio
d) bromito de calcio
e) cianuro de magnesio
f) dicromato de calcio

3. a) Escriba la fórmula y coloque el nombre de los compuestos que se espera formen los pares de iones siguientes:

	OH ⁻¹	SO ₄ -2	PO ₄ -3	NO ₃ -1
NH ₄ ⁺¹				
Na ⁺¹				
Mg ⁺²				
Pb ⁺²				
Ba ⁺²				
Ag ⁺¹				

b) Escriba el nombre de cada uno de los compuestos formados en el inciso a

Nomenclatura de Ácidos Binarios y Ternarios

Ácidos Binarios

Los **ácidos** son una clase importante de compuestos que contienen hidrógeno y se designan con un método especial. Por ahora, definiremos un ácido como una sustancia cuyas moléculas producen los iones hidrógeno (H⁺) cuando se disuelven en agua. Éstas sustancias a las cuales se les llaman ácidos, se reconocieron al principio por el sabor amargo de sus soluciones.

Un **ácido** puede verse como una molécula con uno o más iones H⁺ unidos a un anión. Al escribir su fórmula escribiremos el H como primer elemento, por ejemplo: HCl, H₂S.

Los ácidos binarios son hidruros de los no metales que al disolverse en agua se comportan como un ácido (hidrácido). Para nombrarlos se añade el sufijo hídrico a la raíz del nombre del elemento no metálico. Por ejemplo, cuando se disuelve en agua HCI (cloruro de hidrógeno) gaseoso, forma ácido clorhídrico.

EJEMPLO 1

Nombrar los siguientes compuestos:

Fórmula	Hidruro binario	Nombre del ácido ensolución acuosa
HF	Fluoruro de hidrógeno	Ácido fluorhídrico
HI	Yoduro de hidrógeno	Ácido yodhídrico
H ₂ S	Sulfuro de hidrógeno	Ácido sulfhídrico
HCN	Cianuro de hidrógeno	Ácido cianhídrico

Es importante no confundir los nombres de los ácidos binarios con los de los compuestos moleculares binarios.

Ácidos Ternarios

Los **ácidos ternarios** u oxácidos son compuestos de hidrógeno y un ión poliatómico (un no-metal y O) que se comportan como ácidos cuando se disuelven en agua. Para escribir las fórmulas de los oxácidos se coloca primero el hidrógeno luego el símbolo del elemento central y por último el oxígeno (H_nXO_m, siendo X el símbolo del elemento central, que da el nombre al oxácido).

Podemos considerar que un ácido se compone de un anión unido a suficientes iones H⁺ como para neutralizar totalmente o equilibrar la carga del anión. Así pues, el ión PO₄-3 requiere tres iones H⁺ para formar H₃PO₄.

Los oxácidos se pueden obtener a partir del anión poliatómico correspondiente y del catión hidrógeno. Para nombrar a los oxácidos, se antepone la palabra "ácido" y se cambia la terminación ito del ión por oso y ato por ico.

Para nombrar los formados a partir de oxianiones terminados en **–ato** cambian la terminación del ácido por **ico**. Por su parte, los aniones cuyos nombres terminan en **–ito**, forman ácidos cuyo nombre finaliza en **–oso**. Cuando el ión poliatómico tiene algún prefijo, por ejemplo, hipo, per, este se mantiene invariable al formarse el ácido.

EJEMPLO2: Nombrar los siguientes oxácidos

a) HClO₄

b) HNO₂

c) H₂MnO₄

d) H₂CrO₃

Respuesta:

a- Como el ácido proviene del anión ${\rm ClO_4}^{-1}$ (perclorato), el ácido se nombra ácido perclórico

b- El ácido proviene del anión NO₂-1 (nitrito), el ácido se nombra ácido nitroso

- c- El ácido proviene del anión ${\rm MnO_4}^{-2}$ (manganato), el ácido se nombra ácido mangánico
- d- El ácido proviene del anión ${\rm CrO_3}^{-2}$ (cromito), el ácido se nombra ácido cromoso.

EJEMPLO 3

Escriba la fórmula de los siguientes ácidos:

a) Ácido sulfúrico b) ácido cloroso c) ácido dicrómico d) ácido fosforoso

Resolución:

$$SO_4^{-2} + 2H^{+1} \rightarrow H_2SO_4$$

ión sulfato ácido sulfúrico

$$ClO_2^{-1} + H^+ \rightarrow HClO_2$$

ión clor**ito** ácido clor**oso**

$$Cr_2O_7^{-2} + 2H^+ \rightarrow H_2Cr_2O_7$$

lón dicromato ácido dicrómico

$$PO_3^{-3} + 3H^+ \rightarrow H_3PO_3$$

lón fosfito ácido fosforoso

Tercera Actividad: Te invitamos a realizar los ejercicios propuestos y consultar las dudas con los docentes en las clases de apoyo.

Actividad de Integración: Te invitamos a resolver la actividad final que es de integración de temas, consultando dudas con los docentes en las clases de apoyo.

TERCERA ACTIVIDAD:

1- Completar nombre y/o fórmula de los siguientes compuestos

Fórmula	Hidruro binario	Nombre del ácido en solución acuosa
HF	Fluoruro de hidrógeno	Ácido fluorhídrico
		Ácido yodhídrico
	Sulfuro de hidrógeno	
HCI		

2- Completar la tabla siguiente indicando en la columna tipo de compuesto si es un hidrácido o un oxácido.

Fórmula	Nombre tradicional	Nombre IUPAC	Tipo de compuesto
HClO₄			
HBr			
HCIO			
H ₃ PO ₄			
HNO ₃			

3- Dé el nombre o la fórmula según corresponda para cada uno de los ácidos siguientes:

- a) H₂SO₄
- b) ácido fosfórico c) ácido clórico
- d) HNO₂

- e) ácido carbónico
- f) HBrO₃
- g) HIO
- h) ácido manganoso

Ejercicios Propuestos

1 Escriba la	fórmula o nombre	de los siguientes	s compuestos segúr
corresponda:			
a) ácido clórico	b) H ₂ SO ₃ c) á	cido permangánico	d) ácido sulfhídrico
e) HBrO ₃	f) ácido cianhídrio	co g) ácido hip	oocloroso
2 Nombre cada	uno de los siguiente	es ácidos:	
a) HCl	b) HClO ₂	c) H ₂ S	d) H ₃ PO ₃
e) HBrO ₄	f) HI	g) H ₂ CrO ₄	h) HMnO ₄
3 En la siguiente	e lista complete la f	órmula y el nombre	del oxianión u oxácido
para cada par			
Oxianión N	ombre del oxianión	oxácido Nom	nbre del oxácido
a) ClO ₄ -1			
b)			
c) CO ₃ -2			
d)			
,	·		
ACTIVIDAD DI	E INTEGRACIÓN	1	
1. Muchos i	ones y compuesto	os tienen nombres	similares y es fáci
confundirse. Escr	ibir las fórmulas cor	rectas para diferenci	ar entre:
a) Sulfuro de	calcio e hidrógeno s	sulfuro de calcio.	
b) Ácido bromhídrico y ácido brómico			
c) Óxido de hierro (II) y óxido de hierro (III)			
d) Amoníaco	e ion amonio		
e) Sulfito de li	itio y bisulfito de litic)	
f) Ácido clório	co y ácido perclórico)	
,	,		
2. Dé los nombre	es químicos de las :	siguientes sustancias	s conocidas en la vida
cotidiana:	•	<u>-</u>	
a) NaCl (sal de m	iesa)	b) NaHCO ₃ (polvo	de hornear)
. , (531 35 111	- ' ,	, (poirt	· · · · · · · · · · · · · · · · · · ·

Curso de nivelación de Química

c) NaClO (lavandina) d) NaOH (soda caústica) e) CaSO₄ (yeso) f) KNO₃ (sal nitro) g) HCI (ácido muriático) h) CaO (cal Viva) i) Na₂CO₃ (soda solvay) j) Mg(OH)₂ (leche de magnesia) 3. Escriba la fórmula química de cada sustancia mencionada en las siguientes descripciones textuales. a) El carbonato de cinc se puede calentar y forma óxido de cinc y dióxido de carbono. b) Al tratar el hidróxido de magnesio con ácido fluorhídrico forma fluoruro de magnesio y agua.

- c) El dióxido de azufre reacciona con agua y forma ácido sulfuroso.
- d) La sustancia conocida como amoníaco con agua forma hidróxido de amonio.
- e) El ácido perclórico reacciona con cadmio y forma perclorato de Cadmio (II).
- f) El carbonato ácido de sodio se usa para elaborar desodorantes.
- g) El fluoruro de sodio se usa en dentífricos.
- h) El cianuro de hidrógeno es un gas muy venenoso.
- i) El hidróxido de magnesio se usa como purgante y el hidróxido de aluminio como antiácido.
- 4. De las siguientes fórmulas indique cuáles están correctas y para aquellas incorrectas escriba la fórmula correcta.

a) AlCl₂ b) Na(OH)₃ c) NH₃ d) KI e) MgS f) Ba₂O g) Li₂(OH) h) FeO₅

- 5. El ácido nítrico, amoníaco y nitrato de amonio son compuestos importantes del nitrógeno. Escriba sus fórmulas e indique las aplicaciones de cada uno.
- 6. Escriba la fórmula de los oxácidos conocidos del cloro e indique el nombre correcto y el número de oxidación del cloro en cada uno.

- Curso de nivelación de Química 7. Escriba la fórmula y describa una aplicación de los siguientes compuestos: a) fluoruro de sodio b) hipoclorito de sodio c) cloruro de sodio d) nitrato de potasio 8. Escriba la fórmula de las siguientes sales: a) nitrito de bario b) sulfito ácido de magnesio c) permanganato férrico d) dicromato de potasio e) carbonato de sodio f) perclorato de plata g) cloruro de amonio h) fosfato de calcio i) bromito férrico j) sulfuro de aluminio 9. a) Escriba el nombre de los siguientes compuestos: a) $AI(OH)_3$ b) BaO c) (NH₄)₂SO₄ d) K_2SO_3 e) Au_2O_3 f) CaHPO₄ g) ZnCl₂ h) $Al_2(SO_4)_3$ i) Na₂O j) NH₄Cl
 - b) Clasificarlos como óxidos, hidróxidos y sales
- 10. Considere el elemento metálico Cu, el cual es capaz de formar dos cationes sencillos estables. Escriba las fórmulas y el nombre de los compuestos formados por cada uno de estos cationes con cada uno de los siguientes aniones.
- a) cromato
- b) dicromato
- c) bicarbonato
- d) sulfuro

- e) hidrógeno fosfato
- f) hidróxido