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Preface

How much is this book worth to you?
That is a typical estimation question. You are not

looking for a precise answer. Your answer will help
determine a future action (e.g., buying the book or
not). And you can answer it in several different ways.
For example, you could consider the value of finally
knowing the answer to that age-old question, “paper
or plastic?” once and for all, so that you no longer need
to agonize over it at the grocery store. You could con-
sider the value of improving your estimation abilities,
either as an enjoyable pastime or as a useful business
skill. You could consider the value of whiling away a
few hours, thinking about interesting problems and
reading amusing solutions. Lastly, you could consider
the value of acing that job interview with Google. If
this book does help you get that high-flying job, please
let me know (I promise not to charge you more for it).

If you estimate that the value of this book is more
than its cover price, then I hope you will buy it. If
you estimate that its value is less than its price, then I
hope you will not buy it (or that you will be pleasantly
surprised when reading it).

This book continues where the popular and widely
reviewed Guesstimation leaves off. We’ll look at prac-
tical questions such as the value of the solar panel on a
Prius and how far we should walk to recycle that water
bottle. We’ll look at impractical questions such as how
far a mousetrap-powered car could travel and whether
there are more brains or air in a movie theater. We’ll
develop the ability to see the news and identify the
numerical bovine coprolites (BS, that is).

xiii



In addition to learning how to estimate for fun
and profit, we’ll become a lot more familiar with big
numbers. These numbers are all around us, and some
of them are even important. There are a billion people
in China. The federal budget deficit is a trillion dollars.
The president was paid a million dollars. After a while
all these zillions sound the same. However, a trillion
is a thousand times bigger than a billion, which is a
thousand times bigger than a million. A factor of a
thousand is a lot. If you make $50,000 a year, then
you probably don’t worry too much about spending
$50 for something important. Similarly, if the federal
budget deficit is $1 trillion, then we probably shouldn’t
worry too much about spending $1 billion for some-
thing important (assuming that we can agree on what
is important).

Randall Munroe of xkcd.com, describes in a web
comic the difference between a million and a billion
more graphically.

Recognizing that a billion is much larger than a
million can help you avoid some embarrassing errors.
For example, in May 2010 the Dow Jones Industrial

xiv Preface



average plunged one thousand points in just a few
minutes. According to the New York Times, “Federal
officials fielded rumors that the culprit was a single
stock, a single institution or execution system, a $16
billion trade that should have been $16 million” [1].
Oops.

By the way, Google really does use questions like
the following in job interviews. How many golf balls
can fit in a school bus? How many piano tuners are
there in the whole world? [2, 3]. If you can answer
questions like these, you will be more attractive to
companies like Google because it shows that you are
a flexible thinker, are willing to attack imprecise ques-
tions, and can apply your knowledge to real-world
questions.

And you will finally know the answer, if not to the
question of “life, the universe, and everything” [4],
then at least to the question of “paper or plastic?”

xv
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Why estimate?

Because we need to know an answer so we can decide
what to do. If we’re deciding whether to drive to
Virginia Beach for the weekend, we need to estimate
how long it will take. If we’re deciding whether to get
a solar panel on our new car, we need to estimate how
much gas it will save. If we’re deciding between paper
and plastic, we need to estimate how much plastic is
in the bags we use each year. All these questions (and
many more) lead to actions. If the drive is too long, we
won’t go to Virginia Beach. If the solar panel generates
enough energy, we’ll buy that option. If we only use a
few pounds of plastic bags in a year, we won’t agonize
over the choice.

We are not looking to determine the answers to
these questions precisely. We just need to deter-
mine them well enough to decide on an action. This
means answers fall into one of the three “Goldilocks”
categories:

1. too big
2. too small
3. just right

If the answer is too big or too small, then the action is
obvious. If the driving time is about 1 hour (too small)
then we will drive to Virginia Beach for the weekend.
If the driving time is about 10 hours (too big) then
we won’t. Only if the driving time is in between (just
right), do we need more information (such as how
much traffic to expect). Similarly, if the solar panel
option on the new car will save about 500 gallons of
gasoline each year (too big), then we will buy the solar
panel. If the solar panel option will only save about
5 gallons of gasoline each year (too small), then we
will not buy it. If it will save an intermediate amount,
then we need to do more work to get a more precise
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answer. Similarly, if we use 1 pound (too small) or
1,000 pounds (too big) of plastic bags a year, then our
“paper or plastic” decision is easy. Only if the answer is
intermediate (just right) do we need to do more work
to determine the exact relative environmental impact
of plastic and paper bags. However, the extra work to
achieve that level of precision is way beyond the scope
of this book.

In this book, we will only try to estimate answers to
within a factor of ten, as that will be good enough for
most questions.

How do we estimate? There are three steps and one
technique to make it easier. First, write down the
answer. Second, if necessary, break the problem down
into small pieces. Third, recombine the pieces. The
final step is to compare our answer to the Goldilocks
categories. The technique is to establish boundaries for
the answer rather than to estimate it directly.

Let’s look at this in more detail.

Step 1: Write down the answer to within a factor
of ten.* Many problems are simple enough so that
we can answer them immediately (within a factor
of ten). How long does it take a pumpkin to fall
from a ten-story building? How much does a new
compact car cost? How long does it take to fly across
country? All of these can be answered immediately (10
seconds, $20,000, and 6 hours). However, you need to
remember one principle.

Dare to be imprecise!

None of those answers is precisely correct. Precise an-
swers take a lot more time. However, most questions

* A “factor of ten” refers to the number of zeros in the answer. Is
the answer 1, 10, 100, or 1,000?
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do not need persnickety precision. If you want to buy
a car and can only afford to spend $5,000, then you
cannot buy a new car. If you can afford to spend
$100,000, then you can buy a new car. Only if you
have an intermediate amount, for example $15,000,
do you need to know the cost of a new car more
precisely.

Of course, if all problems were this easy, you would
not bother with this book. If the problem is more
complicated than that, we need to simplity it.

Break down the problem

Step 2: Break the problem into smaller pieces. Write
down the answer to each of these pieces to within a
factor of ten. If the smaller pieces are still too compli-
cated, break them down further. Then we

Recombine the pieces

Step 3: Take the estimates of each piece and multiply
them together to get the overall estimate. For example,
if we want to estimate the total time that all college
students talk on their cell phones, we would multiply
our estimate of the number of college students by
our estimate of the time each student spends on the
phone.

Estimate by bounding

Technique: It is often easier and more reliable to
estimate upper and lower limits for something than
to estimate the quantity directly. Consider estimating
the amount of time each day that the average col-
lege student spends talking or texting on his or her
cell phone. We don’t know if it is 10, 27, 34 or 62
minutes. However, we can confidently claim that it is
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more than 2 minutes and less than 3 hours (or 200
minutes).*

Now we just need to convert those bounds to an
estimate. The way to do it is to take an average. But we
won’t just add the upper and lower bounds and divide
by two. That would give us an estimate (100 minutes)
that is a factor of two lower than our upper limit, but a
factor of fifty greater than our lower limit. Because our
goal is to estimate an answer within a factor of ten,
we could be way off. (Especially after multiplying the
estimates of each piece together.)

The solution is to take the geometric mean. The
geometric mean of two numbers is the square root of
their product. For example, the geometric mean of 5
and 20 is 10, because 10 = √

(5 × 20). However, we
won’t calculate square roots on the back of a cocktail
napkin. That would be too ostentatious and needlessly
precise.

To take the approximate geometric mean of any
two numbers, just average their coefficients and aver-
age their exponents.† In the phone case, the geometric
mean of 2 (2×100)minutes ‡ and 200 (2×102)minutes
is 20 (2× 101) minutes, because 1 is the average of the
exponents 0 and 2. Similarly, the geometric mean of
2×1015 and 6×103 is about 4×109 (because 4 = 2+6

2
and 9 = 15+3

2 ).
If the sum of the exponents is an odd number, the

procedure becomes a little more complicated. Then
you should round the resulting exponent down, and
* Yes, I know that 3 × 60 = 180, not 200. But 200 is close enough
for this book.

†We use coefficients and exponents to describe numbers in
scientific notation. The exponent is the power of ten and the
coefficient is the number (between 1 and 9.99) that multiplies the
power of ten. If you are not familiar with this notation, please
check appendix A (“Dealing with Large Numbers”) and then
come right back. We’ll wait for you here.

‡ Any number raised to the 0th power is 1.
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multiply the final answer by three. Therefore, the
geometric mean of 1 and 103 is 3 × 101 = 30.

Compare the answer

After we estimate the answer to a question, there is
always one final step. Presumably, we attacked that
particular question because the answer might mean
something or might guide our actions. However, an-
swers only mean something when compared to some-
thing else. Therefore, we need to compare the answer
to a reasonable (or unreasonable) standard. Only then
can we determine which of the three Goldilocks cate-
gories the answer falls into.

Failures of estimation

Lastly, we need to think about when estimation fails.
There are three types of failure. First, we may badly
over- or underestimate a quantity. However, if we
bound our estimates carefully, we should be able to
recognize possible problems. For example, if our lower
and upper bounds are 102 and 103, then we can be
pretty confident that our estimate of 3× 102 is reason-
ably good. If our lower and upper bounds are instead
1 and 105, then our estimate is the same, but it has a
much larger margin of error.

Second, we may choose the wrong model for our
estimate. If we try to estimate the number of auto-
mobile accidents per year in the United States, we
would get different answers if we assumed that they
were mostly caused by teenagers, by senior citizens, by
distracted parents, or by drunk drivers.

Finally, we may choose a nonlinear problem. Typ-
ically, we assume that if we do something and get a
certain response, then two of us doing it will get twice
the response (and 3× 108 Americans will get 3× 108
more response). This can fail spectacularly.
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For example, if I stand on a diving board, it will
bend a few inches. If you join me on the board, then
it will bend about twice as much. But if twenty of us
get on the diving board, it will not bend; it will break.

Similarly, if one car on the highway can transport
one person 60 miles in an hour, then one hundred
cars on the same highway can transport one hundred
people 60 miles in that same hour. However, 104 cars
on the same highway cannot transport 104 people 60
miles in an hour because they will cause a huge traffic
jam.

These situations are rare, but we need to watch out
for them.

Let’s get started.

Example 1: Paving with pizza boxes

Howmuch area could we cover with all the pizza boxes
used by Americans in one year? This is too compli-
cated to estimate directly, so we need to break the
problem into smaller pieces. Let’s estimate the number
of pizza boxes we each use a year and the area of each
pizza box.

Howmany pizzas does the average American order
each year? We may not know the average, but we can
set upper and lower bounds. It is more than one and
less than one hundred. Thus, we will estimate that
the average is the geometric mean, which is ten pizzas
per year. Another approach would be to estimate the
number of times per week or per month that we get
pizza in a pizza box (either take-out or delivered). If we
have pizza once a week and share a pie with a friend,
that makes our share twenty-five pizzas per year.

Estimating the area is easier. A large pizza is 18
inches in diameter (or almost 0.5 m). The pizza
box will be a slightly larger rectangle with an area of
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one-quarter square meter (0.25m2). Now all we need
to do is multiply.*

A = (3 × 108 Americans) ×
(
10

pizzas
Am-year

)

×
(
0.25

m2

pizza

)

= 109 m2 = 103 km2 = 500mi2

And now for the final step, comparing the answer.
This area is about the area of a large city such as New
York City, Los Angeles, or Virginia Beach.† That is
definitely a lot of pizza boxes.

Example 2: Playing video games

How much time did Americans spend playing video
games last year? How many lifetimes?

Again, this question is too complicated to just write
down the answer. We will need to break it down into
smaller pieces. Let’s estimate the percentage of people
who play video games and the average time they each
spend doing so. Probably about half of all Americans
between the ages of ten and forty play video games. It
is certainly more than 10% and less than 100%, so we
can take the geometric mean and use 30% (or we can
just use 50%). Wemight not know howmuch time the
average gamer spends at his or her console every day.
However, we can confidently assume that it is more
than 10 minutes and less than 10 hours.‡ Taking the

*We do need to know that the U.S. population is approximately
300 million (3 × 108). That is another one of the few numbers we
need to memorize in order to make good estimates. Feel free to
write it on your shirt cuff or wrist.

† That progression is an example of bathos, just like “For God, for
country, and for Yale.”[5]

‡We might be wrong, but we would be confidently wrong.
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geometric mean of 10 and 600 minutes gives about 1
hour per day.*

Is this a reasonable average? It is probably too low
for high school and college students and probably too
high for thirty-somethings. On the other hand, the
answer is likely to be between 0.5 and 2 hours and is
almost certain to be between 0.25 and 4 hours, so our
estimate will not be too far off.

About one-third to one-half of the population will
be between ten and forty years old (as that is thirty
years out of our average lifespan of eighty years). This
means that, for the general population, the average
amount of time per day spent playing video games is

t = 1
hour
day

× 0.5 × 30 years
80 years

= 0.2
hour
day

.

Now we need to calculate the total time spent
playing video games by all Americans. To do this, we
need to multiply the number of hours per day by the
number of days in a year and by the total number of
Americans.

T = 0.2
hour
day

× 400
days
year

× (3 × 108 Americans)

= 2 × 1010 hours/year

That is a lot of time! In fact, that is too much. I do
not have a clear idea of how large 10 billion hours is.
In order to perform the final step and compare this
answer to other times, we first need to convert it to
more appropriate units.

* Yes, yes. The geometric mean of 10 and 600 is 77.45. However,
given that neither 10 nor 600 is precisely determined, we won’t
precisely determine their geometric mean. If our answer turns out
to be “just right,” then we can worry about fine-tuning it.
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Let’s see. At 24 hours per day and 400 days per
year, there are 104 hours per year.* That means that
1010 hours equals 106 years. Wow, that is still a lot
of time.

Now let’s convert this to lifetimes. At eighty years
per lifetime, 106 years equals 104 lifetimes. However
we look at it, it is a tremendous amount of time.

Well, no. The amount of time became huge because
wemultiplied it by the population of the United States.
Let’s make a different comparison. The daily time
spent playing video games, when averaged over all
Americans, is only 0.2 hours. That is 0.2 hours out of
24, or only 1%. Even the people actually playing video
games are spending only one hour per day, which is
just 4% of their time.

Thus, it is important both to estimate the number
correctly and to make appropriate comparisons.

* Yes, I know that there are 365 days per year. Would you rather do
the arithmetic with 400 or with 365?
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General Questions

Chapter 2
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



Here are some of life’s important questions, ranging
from the total length of all our toilet paper through
the literary efforts of a million monkeys to the amount
of pee in our swimming pool. We’ll start slowly by
estimating length, then area, then volume, and then
more intricate questions.
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Who unrolled the toilet paper? 2.1
If all of the toilet paper used in the United
States in an entire year were rolled out, how far
would it stretch?

HINT:Howmuchtoiletpaperdoyouuseeveryday?

HINT:Thereare3×108peopleintheUnitedStates.

13



ANSWER: To estimate this, we need to break it down
into how much toilet paper each American uses daily,
how many Americans there are, and how many days
there are in a year.

There are two possible approaches to estimating
individual toilet paper usage. We can estimate how
much toilet paper we use each day, or we can estimate
how many rolls of toilet paper we use a month (or
a year). I sit on the toilet about once a day and use
about ten sheets of toilet paper each time.* However,
we should probably account for the different waste
disposal plumbing and toilet paper requirements of
the different genders. Let’s double this to twenty
sheets per day.† Now let’s compare this with the
alternative estimate. My wife and I replace the toilet
paper roll in our bathroom about once every two
weeks. At four hundred sheets per roll, that is thirty
sheets per day for two people. As that is not the only
toilet we use, 20 sheets per person per day is very
reasonable.

At twenty sheets per person per day, we each use
about 7 × 103 sheets per year. There are 3 × 108
Americans, so we use a total of

N = (7 × 103
sheets

Am · year ) × (3 × 108 Am)

= 2 × 1012
sheets
year

.

That is 2 trillion sheets of toilet paper. Each sheet is
about 4 inches or 10 cm long. Thus, the total length of

* Restricting ourselves to one sheet, as suggested by Sheryl Crow,
might save paper [6] but would have other significant negative
repercussions.

† If we get drunk and toss a few squares of toilet paper in the air,
does that mean we are three sheets to the wind?
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toilet paper used by all Americans is

L =
(
2

m
Am · day

)
×

(
400

days
year

)
× (3 × 108 Am)

= 2 × 1011
m

year
= 2 × 108

km
year

That is about the distance from Earth to the Sun
(although if we unroll it that far, the toilet paper will
get very charred).

This is, of course, a very silly comparison. (It is also,
of course, a very silly question.) A more reasonable
comparison would be to our other daily paper usage.
For example, our daily newspaper also contains about
twenty sheets. However, each of those sheets has an
area of about 1 m2, or about one hundred times larger
than the 0.1m × 0.1m = 10−2 m2 area of each sheet
of toilet paper. If we want to reduce our environmental
impact, we should start with the biggest items, not the
smallest.

15
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Money height 2.2
How tall is a
stack of a trillion
one-dollar bills?

HINT:Howthickisaream(fivehundredsheets)ofpaper?

17



ANSWER: To estimate this, we need to estimate the
thickness of one bill. Perhaps you know the thickness
of a single bill, but I don’t. (Is it 0.1, 0.01, 10−3, or 10−4

inches?)
When we can’t easily estimate the thickness (or

mass, or whatever) of a single object, we can often
easily estimate the thickness of a set of objects. In this
case, it is much easier to estimate the thickness of a
ream (five hundred sheets) of paper than a single sheet.
A ream of paper is about 2 inches (or 5 cm) thick. This
means that the thickness of a single dollar bill is

t = 5 cm
500 bills

× 1m
102 cm

= 10−4 m/bill,

and the height of a trillion (1012) bills is

h = 1012 bills × 10−4 m/bill = 108 m = 105 km.

Now we need to ask the crucial question. Is that big?
Unfortunately, there is no natural scale, so let’s choose
some arbitrary ones. A distance of 105 km is about
6× 104 mi (because 1 km = 0.6 mi). That is more than
two times the circumference of the Earth and about
25% of the distance to the Moon.
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Blotting out the Sun 2.3
Suppose that we could launch a trillion one-dollar
bills into the atmosphere and keep them there. What
fraction of the sunlight hitting the Earth could we
block with all those dollar bills?

HINT:Whatistheareaofadollarbill?

HINT:WhatistheareaoftheEarth?

HINT:TheradiusoftheEarthisr=6×106m.
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ANSWER: If we could somehow launch all of those
dollar bills into the atmosphere, how much sunlight
would they block? To estimate this, we need to esti-
mate the area of all those dollar bills. Go ahead, take
a bill out of your pocket and look at it. You can even
splurge by looking at a $20 bill.

Each bill is about 2 inches by 6 inches, or 5 cm by
15 cm. This means that its area is 75 cm2 or (rounding
up) about 10−2 m2. One trillion bills will then have an
area of

A = 1012 bills × 10−2 m2/bill = 1010 m2.

And now, again, we ask: Is that big? We can compare
this to the surface area of the Earth.* That is,

AEarth = 4πr 2 = 4π(6 × 106 m)2 = 4 × 1014 m2.

The fraction of the Earth’s surface area that we could
cover with 1 trillion one-dollar bills is

f = 1010 m2

1014 m2 = 10−4

Thus, 1 trillion one-dollar bills would cover only one
part in ten thousand of the Earth’s area and therefore
could block at most one part in ten thousand of the
sunlight reaching the Earth. If we add the 2 trillion
sheets of toilet paper used by Americans each year,
we would only increase that to three parts in ten
thousand.

That makes one trillion dollars seem tiny.

* Knowing a few numbers makes estimation easier (even in these
days of searching the Web for everything). The radius of the
Earth is 6 × 106 m = 6 × 103 km.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Really extra-large popcorn 2.4
How many kernels of popped popcorn are
needed to fill a bedroom? A movie theater?

HINT:Whatisthevolumeofapieceofpopcorn?

HINT:Whatisthevolumeofaroom?

HINT:Estimatelength,width,andheight.
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ANSWER: We need two pieces of information: the size
of the average popped kernel of popcorn and the size
of the average bedroom (or movie theater). A typical
kernel of popcorn is about 1 cm to 2 cm in length and
thus has a volume of about 5 cm3—a value between
(1 cm)3 and (2 cm)3. A typical bedroom is about 12 ft
by 15 ft by 8 ft high, or 4 m by 5 m by 2.5 m. Thus it
will have a volume of

V = (4m)× (5m) × (2.5m) = 50m3.

Now we need to convert the units from cubic
meters to cubic centimeters:

V = 50m3 ×
(
100 cm
1m

)3
= 50m3 ×

(
106

cm3

m3

)

= 5 × 107 cm3.

This means that we will need

N = Vroom

Vkernel
= 5 × 107 cm3

5 cm3 = 107

kernels of popcorn to fill the room. If we can count
one piece per second, it will take four months to count
them all.

A movie theater is significantly larger than a bed-
room, although many people seem to use them inter-
changeably. A typical movie theater will have about
twenty seats per row and about twenty rows. There will
be about 3 ft (about 1 m) between seats and also 3 ft
between rows. Thus the seating area is about 400m2

and the total area is about 600 m2 (although this is
getting needlessly precise). The average height is about
20 ft or 6 m, giving a volume of

V = (6m) × (600m2)= 4 × 103 m3 = 4 × 109 cm3.

Thus, the movie theater is about one hundred times
larger than a bedroom and could contain about 109
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kernels of popcorn (or about three kernels for every
person in the United States).

Perhaps a more useful metric is the number of
bags of microwave popcorn needed to fill a room. The
volume of a full bag is about 1 liter, or about 103 cm3.
Thus, we would need to pop about

N = 5 × 107 cm3

103 cm3/bag
= 5 × 104 bags

of popcorn to fill our friend’s room. That would be
expensive.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Building volume 2.5
What is the total volume of all human-built
structures (e.g., buildings, sheds, cars . . .)
in the United States? How does this
compare to the
volume of
Mt. Everest?

HINT:Howlargeisyourhome?

HINT:Howlargeisyourworkplace?

HINT:Mt.Everestis104mtall.

HINT:Mt.Everestismuchbroaderthanitishigh.
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ANSWER: There are lots of different kinds of struc-
tures: buildings, cars, airplanes, sheds, missile silos,
boats. Of these, buildings clearly dominate. We can
divide buildings into two general categories, places
where we live and places where we work. Let’s start
with where we live. Most Americans live in houses. A
typical house has an area of 1,000–2,000 ft2 (100–200
m2), a ceiling height of 8–10 ft (2–3 m), and houses
two or three people. Taking the upper range of each
estimate, this gives 600 m3 for three people or 200
m3/person. (If we took the lower range, we would get
200 m3 for two people, or 100 m3/person. As our goal
is to get within a factor of ten of the correct answer,
I refuse to worry about a factor of two.)

Now let’s consider where we work or study.Most of
us work in office buildings or attend school, where we
each have a lot less space than 102 m3/person. Many
of us work in retail shops or restaurants where we
also have significantly less room than 102 m3/person.
Very few of us work in factories (less than 10%)
or farms (less than 2%), so this will not affect the
results significantly. Let’s use the higher estimate of
200m3/person in order to include work space as well
as living space.

Thus, there are about 200 m3 of human-built struc-
ture for each of the 3 × 108 Americans. This gives a
total of

Vbuild = (200m3/Am) × (3 × 108 Am)

= 6 × 1010 m3

or 60 km3 of human-built structures in the United
States.* This seems like a lot.

Now we need to compare this to something. We
can compare it to something totally irrelevant (the

*We converted from cubic meters to cubic kilometers by
multiplying by (10−3 km/m)3 = 10−9 km3/m3.
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volume of a mountain) or to something slightly
relevant (the area of the United States).

Let’s start by comparing this to the volume of
Mt. Everest. Because Mt. Everest is part of a moun-
tain range and is not just an isolated peak, we will
be making some highly questionable assumptions to
estimate its volume. Mt. Everest is about 3 × 104 ft,
or 104 m = 10 km, tall. We’ll assume that it is a cone.
The radius of the base will be between 10 km (giving
an average slope of 45◦) and 100 km (giving an average
grade of 10%) so we will use the geometric mean of 30
km. This gives a volume of

V = 1
3
πr 2h = (30 km)2 (10 km) = 104 km3.

Thus, the 60 km3 volume of human-built structures in
the United States is far less than the 104 km3 volume
of Mt. Everest.

Now let’s make a (slightly) more relevant compar-
ison. Let’s calculate the average height our buildings
would have if spread out over the entire area of the
United States. The contiguous United States is about
3,000 miles (5 × 103 km) from east to west (a three–
time zone or three-hour difference) and about 1,000
miles (1.5×103 km) from north to south, giving a total
area of 7×106 km2 = 7×1012 m2. If all of our buildings
are spread out evenly over this area, they would have
an average height of

h = Vbuild

AU S
= 6 × 1010 m3

7 × 1012 m2 = 10−2 m = 1 cm.

That is definitely not a lot.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Mass of money 2.6
How much does $1 trillion weigh? Consider such
media of exchange as dollar bills, large bills, gold,
perfume, and printer ink.

HINT:Whatisthevolumeof1trillionone-dollarbills?

HINT:Thedensityofpaperisabout1tonperm3.

HINT:Whatisthecostperounceofperfumeorgold?

HINT:Whatisthevolumeofprinterinkinthat$10
cartridge?
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ANSWER: Let’s start with one-dollar bills and move
on to more esoteric media of exchange (ignoring the
fact that most of these do not exist in trillion-dollar
quantities). We already estimated the height of 1 tril-
lion dollar bills to be 108 m and the area of one bill to
be 10−2 m2. Thus, the volume of 1 trillion dollar bills
would be

V1$ = hA = 108 m × 10−2 m2 = 106 m3.

At a density of 1 ton per m3, this gives a mass of

M1$ = (density)(volume) = (1 ton/m3)(106 m3)

= 106 tons

or about the mass of ten nuclear-powered aircraft
carriers.* Given that the largest denomination bill in
circulation today is only $100, a trillion dollars in
U.S. paper currency will have a minimum mass of
104 tons.† That is still way too much to carry easily.
Note that as of June 2010, the total amount of all U.S.
currency was only $0.9 trillion [7].

Now let’s consider gold. Surely a trillion dollars
in gold will be easier to handle. Gold currently costs
about $1,000 per ounce.‡ This means that we need 109
ounces of gold. Because there are 16 ounces in a pound
* There are a plethora of different tons in use today, including short
tons, long tons, and metric tons. They differ in mass by less than
10%, so we will ignore their differences and use 1 ton = 103 kg
≈ 2 × 103 lb.

† Larger bills were rendered obsoelete by electronic currency
transfers.

‡ Yes, I know. Gold is measured in troy ounces, not in avoirdupois
ounces. However, a troy ounce is only 10% heavier than an
avoirdupois ounce. The larger difference between the two
measures is that a troy pound contains only 12 troy ounces,
whereas an avoirdupois pound contains the familiar 16 ounces.
This means that an ounce of gold weighs more than an ounce of
feathers but a pound of gold weighs less than a pound of feathers.
Can we switch to the metric system now? Please?
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and 2 pounds in a kilogram, there are 30 ounces in a
kilogram. Therefore we need

Mgold = (109 oz)
(

1 kg
30 oz

)
= 3 × 107 kg

= 3 × 104 tons.

Thus $1 trillion of gold weighs less than 1 trillion one-
dollar bills but more than 10 billion $100 bills.

The gold will certainly occupy less volume than
the currency. At a density of 20 tons per cubic meter,
the 3 × 104 tons of gold “only” occupies a volume of
1.5×103 m3, which is just a bit smaller than the movie
theater we filled with popcorn earlier.*

Now let’s consider perfume. It costs between $1
and $1,000 per ounce (and probably higher). Let’s take
the geometric mean of $30 per ounce. (OK, I admit
it. I don’t buy perfume. I cheated. According to the
Internet, intermediately priced perfumes cost about
$20 to $50 per ounce.) At 30 ounces per kilogram,
that perfume costs $103 per kilogram.† Thus, again we
need 109 kg or 106 tons of perfume. Even if we used the
most expensive perfume available, at a cost of $3,000
per ounce, we would need 104 tons.‡

Now we get to ink for inkjet printers. It costs about
$5 to $10 for a container of ink. A typical container is
about 5 cm by 5 cm by 0.5 cm, or about 10 cm3. That is
about $1 per cm3 or $1 per gram, so that ink for inkjet
printers costs about the same as perfume.
* It will be much cheaper to fill the movie theater with popcorn
than with gold.

† Yes, I am mixing volume ounces and weight ounces. However,
because we are dealing with liquids that are mostly water and
alcohol, the density is close enough to 1 that an ounce of perfume
weighs about an ounce.

‡ And if 104 tons of this perfume existed, it would be so common
that it could no longer command such a high price, and we would
need to buy something else.
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Thus, $1 trillion of $100-bills, perfume, and inkjet
printer ink would be the lightest, at a mere 104 tons. A
trillion dollars of gold would be several times heavier
but occupy about ten times less volume.

If you want to rob a bank, keep in mind that $1
trillion of $100-bills weighs 104 tons, $1 billion weighs
10 tons, and a mere $1 million weighs 10 kg. It’s time
to start pumping iron if you want to make crime really
pay.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

A baseball in a glass of beer 2.7
While I was at a Norfolk Tides baseball game, a foul
ball landed in the section above me and showered
some of my friends with beer. What is the probability
of a foul ball landing in a cup of beer during one
baseball game? What is the expected number of
“splash downs” during all the major league baseball
games played in an entire season? (See the
answers for an even more
improbable detail.)

HINT:Howmanyfoulballslandinthestandseachgame?

HINT:Whatisthesizeofacupofbeer?

HINT:Whatfractionofpeoplehavebeercups?
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ANSWER: We need to break down the problem into
manageable (or at least estimable) pieces. The first two
pieces will be the number of foul balls per game that
land in the stands and the probability that a given foul
ball lands in a cup of beer. Let’s start with the number
of foul balls that land in the stands. The number per
inning is definitely more than one and fewer than
twenty, so we can take the geometric mean of five for
our estimate.* If you watch a lot of baseball, you can
probably come up with a better estimate; I counted
several (between three and seven) foul balls per inning
landing in the stands. With nine innings per game,
this amounts to forty foul balls per game that could
possibly land in a cup of beer.

Now we need to estimate the probability that a
given foul ball will land directly in a cup of beer. (Note:
only beer is sold in open-topped cups.) This means
that we need to break the problem into even smaller
pieces. Let’s assume that the cup of beer is sitting
innocently in a cup holder. To hit a cup of beer, the
foul ball needs to

1. not be caught by a fan
2. land within the area of a seat
3. hit a seat whose owner has a cup of beer
4. land in the cup
Most fly balls are caught, but many are not. Let’s

estimate that between one-quarter and one-half of fly
balls are not caught. “Averaging” the two, we will use
one-third.

Most of the stadium area is used for seating, so let’s
ignore that factor.

At any given time, more than 1% and less than
100% of fans have a cup of beer in front of them.

* Yes, I know the square root of 20 is a touch less than 4.5. If you
prefer to round down and use four rather than five, go ahead.
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Using the geometric mean, we estimate that 10% of
seats have beer cups.

A large beer cup is 4 inches (10 cm) across, so the
baseball must land in an area defined by

Acup = πr 2 = 3(2 in)2 = 10 in2.

The area of the seat (from arm rest to arm rest and
from row to row) is about 2 ft by 3 ft (60 cm by 90 cm),
so

Aseat = (24 in) × (36 in) = 103 in2.

Thus, if the ball hits a seat that has a cup of beer, the
probability that it lands in the cup is

Pcup = Acup

Aseat
= 10 in2

103 in2
= 10−2

or 1%. The metric probability is the same.
(Extra credit question: Which is more likely, that

the balls lands in the cup in the cup holder, splashing
the beer, or that the fan is holding the cup of beer
when the foul ball arrives and splashes it in his or her
excitement?)

This means that the probability that any single foul
ball lands in a cup of beer is

P = 1
3

× 1
10

× (10−2) = 3 × 10−4.

With forty foul balls per game, this means that the
probability of a foul landing in a cup of beer during
any one game is 10−2. This is not very likely. The
probability that we will be directly below the splash is
even less likely.

During the entire season, each of the 30 teams plays
160 games, giving a total of about 2,000 games (as it
takes two teams to play a game). This means that the
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total number of beer landings in one season is

B = (2 × 103 games per season)

×(10−2 beer landings per game) = 20.

Because baseball analysts keep meticulous statistics,
I am very surprised that they do not appear to record
beer landings.

Oh yes. The very improbable detail? According to
my friends, the beer belonged to our former governor!
(“Now at an improbability factor of a million to one
against and falling,” D. Adams [4].)
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Life on the phone 2.8
How many people are talking or texting on their
cell phones at this instant?

HINT:Whatisthepopulationoftheworld?

HINT:Howmuchtimedoyouspendeachdaytalkingon
yourcellphone?

HINT:Whatfractionoftimedoyouspendtalkingonyour
cellphone?
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ANSWER: The key insight to solve a problem like this
is that the fraction of time the average person spends
doing some activity is equal to the fraction of people
doing it right now. For example, if the average person
spends one-third of his or her time sleeping, then at
this instant we can expect that one-third of all people
are asleep. This means that

ttalk
tday

= Ntalk

Ntotal

where ttalk is the average time spent talking or texting
on the cell phone per day, tday is the length of the
day, Ntalk is the number of people talking or texting
on their cell phone right now, and Ntotal is the world
population, which equals 7 × 109.

Now we need to estimate the amount of time the
average person spends on his or her cell phone. We
know that the proportion of cell phone use world-
wide must be more than 1% and less than 100%,
so we will take the geometric mean and estimate
10% cell phone use.* Similarly, each cell phone user
will spend more than 1 minute and less than 103
minutes (16 hours!) talking each day, so we will take
the geometric mean and estimate 30 minutes.† This
means that average daily cell phone use, including
everyone, is

ttalk = 30min × 10% = 3min

* These limits are broad enough to include the very high cell
phone usage in the developed world and the much lower cell
phone usage in the developing world.

† Your estimates may be less than mine. I work on a college
campus, where it seems that almost all of the students are talking
on their cell phones.
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Thus

Ntalk = Ntotal ttalk
tday

= 7 × 109 people × 3min/day
24 × 60min/day

= 107 people

or 10 million people are talking on their cell phones
right now. Wow! That is just as many as are picking
their noses right now [8].

Despite the huge range between the upper and
lower limits of our estimates, by taking the geometric
means we can be reasonably confident that our answer
is correct to within a factor of ten.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Money under the bridge 2.9
How much money
is collected per
hour during rush
hour at the George
Washington Bridge,
which connects
New York City
and New
Jersey?

HINT:Whatisthetollforonecar?

HINT:Howmanycarsperhourcrossthebridge?

HINT:Howmanylanesoftrafficdoesthebridgecarry?
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ANSWER: To estimate the money collected at the
George Washington Bridge we need to estimate the
traffic flow and the toll. In these days of E-ZPass and
other electronic toll payers, it is easy to overlook the
toll amount. However, the GWB toll passed $5 many
years ago and is not yet at $20, so we will use the
geometric mean of $10. Note that the toll is only
collected heading into New York.*

There are two ways to estimate the traffic flow.
We can estimate the number of toll booths and the
time per car per toll booth. Alternatively, we can
estimate the number of travel lanes and estimate the
time per car per lane. Let’s start with the second. The
GWB has two levels, with about eight lanes per level.
This means that there are eight inbound lanes. At the
recommended time of 2 seconds between cars, each
lane can handle 1,800 cars per hour for a total of
1.5 × 104 cars per hour.

Now let’s estimate the traffic flow from the number
of toll booths. The GWB has a lot of toll booths.
There are definitely more than ten and fewer than one
hundred, so let’s take the geometric mean of thirty.
The automatic toll booths can process one car every 3
to 4 seconds. The staffed toll booths take a lot longer.
They can probably process one car every 10 seconds
(fewer if you have exact change, more if you don’t).
About one-third of the toll booths are automated. This
means that the automated booths can handle a total of
three cars per second (ten booths divided by 3 seconds
per car), and the staffed booths can handle a total
of two cars per second (twenty booths divided by 10
seconds per car), for a total of five cars per second or
2 × 104 cars per hour. This is very close to the other
estimate, lending credence to both.

* As it is unfair to make people pay to drive into New Jersey. N.B.:
I grew up in New Jersey, so I know it’s the landfill of opportunity.

42 Chapter 2 General Questions



Now we can calculate the money collected. At $10
per car, the GWB collects $2 × 105 per hour during
rush hour. Wow. That’s more than I collect in one
entire year.

That is, of course, an irrelevant comparison. We
should compare the money collected to the cost of the
bridge. If we assume that the average collection rate is
half of the peak rush hour rate, then the GWB collects
a total of

T = 1
2
×$2 × 105 per hr×104 hr/yr = $109 per year

A new bridge would cost more than $1 billion and
less than $100 billion, so we’ll estimate $10 billion. My
mortgage payments are about 1% of the cost of my
house per month, or about 10% per year. Applying
the same logic to the George Washington Bridge, the
“mortgage” payments would be 10% of $10 billion, or
about $109 per year. This seems reasonable.

Thanks to Chuck Adler of St. Mary’s University in
Maryland for the question.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Monkeys and Shakespeare 2.10
If a million monkeys type randomly on a million
typewriters for a year, what is the longest string
of consecutive correct letters of Shakespeare’s
Hamlet (or The Cat in the Hat [9]) (starting from
the beginning of the play) that they would likely
type (assuming that they typed only letters
and ignoring capitalization, punctuation,
and spacing)? If all of the world’s
computers generate random
letters for one year, what is the
longest string of consecutive
correct letters of
Shakespeare’s Hamlet
that they would likely
generate?

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

HINT:Thechancethatthefirstletteriscorrectis1outof
26.

HINT:Thechancethatthefirsttwolettersarecorrectis1
outof262orabout1in1,000.

HINT:Howmanyrandomcharacterspersecondcana
monkeytype?

HINT:Thereareπ×107secondsinayear.

HINT:Howmanycomputersarethereintheworld?

HINT:Howmanyrandomcharacterscanonecomputer
generatepersecond?
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ANSWER: We need to estimate the total number of
letters typed and the probability of finding a string of
n correct consecutive letters in that total. An expert
typist can type one hundred words per minute cor-
rectly. At about five letters per word, this works out to
about ten letters per second. Thus, we’ll assume that
any typist can type ten letters per second randomly.*
In one year the million monkeys will type

N = 106 monkeys × (π × 107 s) × 10 letters/s

= 3 × 1014 letters

If we insist on letting them eat, drink, sleep, etc., then
they will only type N = 1014 letters.†

The probability that the first letter is correct is 1 out
of 26. The probability that the second letter is correct is
1 out of 26. The probability that the nth letter is correct
is also 1 out of 26. This means that the probability
that n consecutive letters are correct is 1 out of 26
raised to the nth power, or 26n. If the probability
of an event happening—say of a coin landing on its
edge—is 1/10,000, then we would have to toss about
10,000 coins for one to probably land on edge. So if the
probability of getting a particular string of n letters is
1/26n, then we need about N = 26n trials to probably
get such a string.

For example, out of a string of twenty-six random
letters, we would expect that one would match the
first letter of Hamlet (or The Cat in the Hat). Out of
a string of 262 = 676 ≈ 103 letters, we would expect
that one set of two would match the first two letters
of Hamlet and out of a string of 106 letters, we would
expect that about one set of four would match the
* And yes, we will ignore all of the tremendous difficulties
inherent in typing truly randomly. Random number generation
is a sophisticated and subtle field.

† Remember that 1 year = π × 107 s, a very useful conversion
factor.
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first four letters of Hamlet. Therefore, for every factor
of 103 increase in the number of random letters, the
length of the longest correct string of letters should
increase by two.*

Let’s splurge and use 10 million monkeys. Then we
will have a string of 1015 random letters. At two correct
letters for every factor of 103 random ones, we can ex-
pect ten correct consecutive letters. That is not a lot.†

Now let’s consider the computers. We need to
estimate the number of computers in the world and
their random letter generation speed. There are more
than 108 and fewer than 1010 computers in the world
(as the developed world has at least one computer
per household and the entire world has fewer than
one computer per person). We will take the geometric
mean and use 109 computers.‡ The average computer
runs at about 1 GHz (more than 100 MHz and less
than 10 GHz) and requires ten instructions to generate
a random letter (more than one and fewer than one
hundred) and can thus generate 108 random letters per
second. Thismeans that in one year the computers will
generate

N = (109 computers) ×
(
108

letters
comp-s

)

×(π × 107 s) = 3 × 1024 letters.

Wow. That is five moles of letters!

* To be precise (which is an epithet in this book), if there are N
random letters, then the expected length of the longest correct
consecutive string of letters is
n = log26 N = log N/ log 26 = log N/1.4. (While the logarithm
might appear daunting, log N is just the exponent of N .) This is
within 10% of our rough calculation.

† And by the way, good luck finding that string of ten correct
letters out of the quadrillion random ones!

‡ Even if our estimate of the number of computers is off by 103,
that will only change the length of correct text by two letters.
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But at two correct letters for every three orders of
magnitude, that is only sixteen correct letters (or only
six more than those 10 million monkeys produced). If
we ignore stage directions, we are left with:

ACT I

Scene I. Elsinore. A platform before the castle.
Francisco at his post. Enter to him Bernardo

BERNARDO:Who’s there?
FRANCISCO:Nay, answ*

Not too impressive.

* Or perhaps we prefer: “The sun did not shin”. That’s probably in
there too.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The titans of siren 2.11
How many ambulances would be needed in the
United States so that everyone can be reached
within 8 minutes in an emergency?

HINT:Howfarcananambulancetravelin8minutes?

HINT:Howmuchareacanitcoverinthattime?

HINT:WhatistheareaoftheUnitedStates?

HINT:Itisabout3,000milesfromcoasttocoast.
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ANSWER: In order to estimate the number of am-
bulances needed to cover the United States, we need
to estimate the area that one ambulance can cover
in 8 minutes and then divide that into the area of
the United States.* It will take 1 to 2 minutes for the
ambulance crew to get in the ambulance. However, as
this is much less than 8 minutes, we will ignore that.
An ambulance can probably travel about 30 mph on
city streets and 50 mph on country roads.† Because
most of the U.S. land area is not urban (although most
of the population is urban), let’s use 50 mph. This
means that an ambulance can travel a distance

r = (50mi/hr) × (8min) ×
(

1 hr
60min

)

= 7mi

and the area covered by one ambulance is

A = πr 2 = 150mi2

Now we need the area of the United States. You
might remember that it is about 3,000 miles from east
to west or that it is about 1,000 miles from north to
south. On the other hand, you might remember that
it is a difference of three time zones from east to west,
which is 3/24 = 1/8 the circumference of the globe. On
the gripping hand, you might remember that it is a
6-hour plane flight and that planes fly at about 500
mph. However you remember it, this would let us
estimate the area of the United States as

A = (3 × 103 mi) × (103 mi) = 3 × 106 mi2
* This is the response time for an advanced life support ambulance
according to National Fire Protection Association
standards [10].

† Unlike most of the problems in this book, here it is equally easy
to work in either U.S. customary or metric units. Because we are
just dividing two areas, there are none of the complicated unit
conversions that make U.S. customary units so hard to use.
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The number of ambulances required is just the ratio
of the two numbers:

N = 3 × 106 mi2

150mi2

= 2 × 104

According to the American Ambulance Association
[11], there were more than forty-eight thousand am-
bulances in the United States in 2004. Given that the
need for ambulances depends on population density
and demographics in addition to just coverage area,
this is a quite reasonable estimate.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Airheads at the movies 2.12
Which has more mass, the air or the brains in
a movie theater?

HINT:Whatisthevolumeofamovietheater?Consider
itsheight,width,anddepth.

HINT:Airhasadensityofabout103timeslessthanwater.

HINT:Waterhasadenistyof103kg/m3.

HINT:Whatisthesizeofthebraininliters?

HINT:Aliterofwaterhasamassof1kg.

HINT:Howmanypeoplecansitinamovietheater?
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ANSWER: In order to compare these, we need to
estimate the volume and density of both the air and
the brains in a typical movie theater. We estimated the
volume of amovie theater earlier in this chapter (when
we wanted to fill it with popcorn) as

V = 4 × 103 m3.

When liquids turn to gas, they expand by a factor of
about one thousand.* This means that the density of
air is about 103 times less than the density of water,†
ρwater = 103 kg/m3, so that ρair = 1 kg/m3. Therefore
the mass of all that air is

M = ρair V = (1 kg/m3) × (4 × 103 m3)

= 4 × 103 kg,

or about 4 tons.
Assuming that the movie theater is fully occupied,

and neglecting the brains of the actors,‡ there are four
hundred brains in the room. The volume of a human
head is more than 1 liter and less than 4 liters (1
gallon), so we can take the geometric mean and use
2 liters. About half of that volume is brain, at a density
of about water. Thus, the total mass of all the brains in
the movie theater is

M = ρwater V = (1 kg/L) × (4 × 102 L)

= 4 × 102 kg.

Therefore, in a typical movie theater, there are 400 kg
of brains and 4,000 kg of air.

Feel free to draw your own conclusions.

* This is another useful fact worth remembering or inscribing on
your shirt cuff.

† The density of water is ρwater = 1 g/cm3 = 1 kg/L = 103 kg/m3.
Different units are easier for different problems.

‡Which would be reasonable even if they were physically present.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Heavy cars and heavier people 2.13
At the fiftieth anniversary celebration for the
Golden Gate Bridge, people thronged the roadway.
So many people crowded onto
the bridge that its arch
flattened, and worried
engineers checked the
load limits.
Compare the
mass density
(in mass per
area) of cars on
the bridge on
a normal day
and people
on the
bridge
during the
celebration.

HINT:Whatisthemassofacar?

HINT:Howfarapartarecarsonthebridgeundernormal
conditions?Howmuchareadoesacar“occupy”?

HINT:Whatisthemassofaperson?

HINT:Howfarapartarethepeopleonthebridge?How
muchareadoesapersonoccupy?
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ANSWER: Cars are much heavier than people, but
they occupy significantly more space. Let’s estimate
the space occupied by one car in both freely flowing
traffic and a traffic jam.

In both cases, the lane width will be 12 ft (or about
4 m). In a traffic jam, there will be about one car length
between cars. Given that a typical car is about 12 ft (4
m) long, this means that a car in a traffic jam occupies
an area of 12 ft by 24 ft, or about 300 square ft (about
30 m2). A typical car has a mass of 1 to 2 tons. Using 2
tons, this gives a mass per area of

[
M
A

]
jam

= 2,000 kg
30m2 = 60 kg/m2.

In freely flowing traffic, drivers should allow 2
seconds of following distance. This means that at
60 mph (about 30 m/s), drivers should leave 60 m
between cars. Thus, at highway speeds each car should
occupy an area of A = 4m×60m = 240m2 (or about
ten times as much area). Thus the mass density will be
almost ten times smaller, or

[
M
A

]
60mph

= 2,000 kg
2 × 102 m2 = 10 kg/m2.

Now the task of estimating the human density
should be rather pedestrian. How many people crowd
into a square meter on festive occasions? One person
per square meter would provide plenty of elbow room
and five people per square meter would be approach-
ing Tokyo subway densities. Let’s estimate two people
per square meter. At 100 kg per person (in round
numbers), that gives a human density of

[
M
A

]
people

= 200 kg/m2
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That is thirty times the mass density of free-flowing
traffic and three times themass density even of a traffic
jam in both directions. Who knew that people were so
heavy?

The engineers were quite right to worry.
Thanks to Ralph E. Edwards of Norfolk, Virginia,

for suggesting the question.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Peeing in the pool 2.14
How much urine
is in a typical public
swimming pool?

HINT:Howmanychildrenusethepooleveryday?

HINT:Whatfractionofthechildrenpeeinthepool?

HINT:Whatisthevolumeofurineexcretedperchild?

HINT:Howrapidlyistheurineremovedfromthepool?
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ANSWER: A good friend told me that his summer
swim team had been accused by the recreational swim
director of peeing in the community swimming pool.
In response, they quietly dumped a gallon of phe-
nolphthalein (a chemical that turns bright red in the
presence of acid) into the pool. During the follow-
ing children’s swim period red regions periodically
bloomed around some of the children. The accusa-
tions ceased, and the water stayed pink for a week.
Unfortunately, according to Snopes [12], there is no
chemical that will reveal the presence of urine in a
swimming pool. However, there is almost certainly
some urine in our local public swimming pool.

In order to estimate the amount of urine in the
pool, we just need to estimate the rate at which urine
enters the pool and the rate at which it leaves the
pool. The rate of urine entering the pool depends on
the number of children using the pool, the fraction of
children peeing in the pool, and the amount of urine
excreted.

Let’s look at the worst case, a popular public out-
door pool in the summer. As usual, we will determine
upper and lower bounds for our quantities. The pool
will have about fifty children in it from morning to
evening (more than ten and fewer than two hundred).
About 30% of the children will pee in the pool (more
than 10% and less than 100%). Between 9 a.m. and
9 p.m. each child who pees in the pool will do so twice.

Now we need to estimate a typical urination vol-
ume. There are several approaches. We can try to (1)
estimate the volume directly or (2) estimate the daily
volume of liquid consumed and divide by the number
of times we pee (assuming no perspiration) or (3)
estimate the volume flow rate and the time.

My job does not require me to pee into a cup, so
let’s skip method 1. I consume about 16 oz (0.5 liter)
of liquid each for breakfast, coffee, lunch, and dinner,
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for a total daily consumption of 2 L. I probably pee
about five times a day, giving a volume per micturition
of 0.4 L. Now let’s consider method 3. Males have an
advantage here, as we get to watch the outflow. The
flow stream is a few millimeters in diameter, and the
flow velocity is probably 1 to 2 meters per second.*
This gives a volume flow rate of (0.3 cm)2(200 cm/s) =
20 cm3/s = 20mL/s. If it takes about 10 seconds to pee
(more than 1 second and less than 100 seconds), this
gives a volume of 200 mL, or 0.2 L. Let’s go with the
input-based method and use 0.4 L for an adult. A child
will have a volume of about half of that, so we’ll use
0.2 L.

This means that urine will enter the pool at a rate:

Vpee = 50 children × 0.3 × 2
urinations

day

×0.2
L

urination
= 6

L
day

.

This seems like a lot, but pools are big. To estimate
their volume, we need to estimate the length, width,
and depth. A typical pool will be 25 m (or yards) long
by six lanes wide. Each lane is about 2 m wide (so that
two or more swimmers can swim in each lane). The
pool will vary in depth from 1.5 m (5 ft) in the shallow
end to about 4 m in the diving end, with an average
depth of 3 m. This gives a pool volume of

Vpool = 25m × 12m × 3m = 103 m3 = 106 L.

Thus, urine is added to the pool at a rate of 6 ppm
(parts per million) per day.
* If we want to determine the flow velocity more precisely,
measure how far away the flow strikes the ground when the
initial velocity is horizontal. It takes slightly less than 0.5 s for the
liquid to fall 1 m, so if the flow strikes the ground 1 m from its
starting point, then its velocity is slightly more than 2 m/s.
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Now we need to estimate the rate at which urine
is removed from the pool. This depends on the water
purification methods. It is rather complicated and
depends on many factors.* However, the important
quantity is the time period in which the urine is
removed. The removal period will be more than one
day and less than one hundred days. Let’s take the
geometric mean and estimate that urine remains in the
pool for ten days.

This means that there is, on average, 60 L of urine
in a public outdoor swimming pool and that this
amounts to 60 parts per million. Fortunately, urine is
sterile.

* Urine is also a complicated collection of different molecules with
different removal rates. We will ignore that complication.
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Recycling: What Really Matters?

Chapter 3
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



We are constantly urged to recycle in order to “save
the Earth.” How much effort should we really put
into recycling? Given our limited resources (including
especially mental effort and available attention), where
should we put our environmental efforts?

Note that there are two schools of thought about
environmental and other moral efforts. The first
school claims that if we can just train everybody to
be environmentally conscious, then everybody will
recycle, drive smaller cars, bicycle to work, and gen-
erate their own electricity during gym workouts.
The second school claims that humans perform only
enough “good deeds” to see themselves as good people
[13, 14]. The concept of “moral licensing” explains
such seemingly anomalous behavior as driving a
10-mpg SUV around the block to go to an organic
food store, riding the elevator at the gym, and leav-
ing high-efficiency lights on longer than regular ones
[15]. If the moral licensing school is correct, then we
should carefully select which environmental efforts we
perform.

Remember that there is plenty of room in the
United States for landfills. As we estimated in Guessti-
mation, a 100 m-tall landfill that covered 103 km2, or
400 mi2, could hold all of our garbage (at 2× 108 tons
per year) for an entire century. That’s the area of a
city like Virginia Beach or Los Angeles or one part in
ten thousand of the area of the United States. Thus we
recycle to save resources, not to save landfill space.

Typically, the most important resource is energy.
While there are several different kinds of energy, the
standard (metric) unit for all of them is the joule
(although, as usual, we will need to convert among
several different units).

Glassmaking uses thermal energy to convert sand
(plus a smattering of carefully chosen contaminants)
into glass. The important quantity is the specific
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heat capacity of the material, which is defined as the
amount of energy required to raise the temperature of
a kilogram (or gram or pound or . . .) of the material
by 1 degree. The specific heat capacity of water is

Cwater = heat
mass × temperature change

= 1
cal
g ·◦C

= 4 × 103
J

kg ·◦C .

Other materials will have specific heat capacities that
are much lower than water. Note that a calorie (1 cal =
4 J) is defined as the energy needed to raise 1 gram of
water by 1 degree celsius.*

Power measures how fast we use energy and is
defined as the energy used divided by the time. A watt
(W) is a joule per second (1 W = 1 J/s). A 100-W
light bulb uses 100 J every second. Electric companies
typically charge for their energy in units of kilowatt-
hours (kWh), which is 1 kilowatt of energy used for
1 hour. So,

1 kWh = (103 W) × (4 × 103 s) = 4 × 106 J,

where 1 hour equals 60 × 60 = 4 × 103 seconds. One
kilowatt-hour costs about $0.10 in most of the United
States.

Chemical reactions rearrange chemical bonds and
transform chemical energy to or from other forms of
energy. The typical energy of a strong chemical bond
is 1.5 eV. We know this because common batteries,
which convert chemical energy into electrical energy,
operate at 1.5 V. It takes one chemical reaction to
move one electron through a potential difference of
1.5 V, changing its energy by 1.5 electron volts (eV).

* A British thermal unit (BTU) is similarly defined as the energy
needed to raise 1 pound of water by 1 degree Fahrenheit.
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Because there are 6×1018 electrons in a coulomb, there
are 6 × 1018 electron volts in a joule (1 J = 1 coulomb
volt).

Gasoline and other hydrocarbons contain chemical
energy. When the carbon or the hydrogen combine
with oxygen (C + O2 → CO2 or H2 + O → H2O),
1.5 eV of energy is transformed into heat. For estima-
tion purposes there are at most three hydrocarbons:
carbon, CH2, and CH4. When we convert from eV
per reaction to joules per kilogram, we find that one
kilogram of carbon (e.g., coal) contains 2 × 107 J;
1 kilogram of CH2 (e.g., gasoline) contains 4 × 107
J; and one kilogram of CH4 (e.g., natural gas or
methane) contains 6 × 107 J of chemical energy.*

We will discuss other forms of energy, such as
energy of motion and energy of position, in a later
chapter.

* See Guesstimation for details.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Water bottles 3.1
A visiting colleague
once spent about 10
minutes trying to
figure what to do
with his empty
plastic water bottle.
This seemed like an
inordinate amount
of time to expend on
such an insignificant
item and prompted
this question: If there
is a trash can at our
elbow, how much
further should we
walk to recycle a
plastic water bottle?

HINT:Whatistheenergycontentoftheplastic?

HINT:Hydrocarbonshaveanenergycontentofabout
4×107J/kg.
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ANSWER: Because plastics contain far more com-
plicated molecules than do aluminum, steel, or glass
(SiO2), recycling plastics is far more complicated than
recycling metal and glass. The plastic in plastic water
bottles is usually recycled to make plastic fiber rather
than more water bottles.

We can set a lower limit on the value of recycling
a plastic bottle by estimating the energy content of
the plastic (i.e., the energy that would be released
by incinerating it). In order to do this, we need to
estimate its mass and energy density (the energy per
kilogram).

Let’s consider a 16-oz plastic water bottle. The
bottle itself weighs far less than its contents. Although
it is difficult to estimate the mass of very light large
objects, we can establish upper and lower bounds.
A plastic water bottle definitely weighs more than 1
gram (the mass of a paperclip) and less than 100 g
(the mass of 4 ounces or 1

2 cup of water). Taking the
geometric mean, we will estimate its mass at 10 g, or
10−2 kg.

Now we need to estimate the energy density of
plastic. Because plastic is a hydrocarbon, its energy
density should be similar to that of gasoline. This
means that the energy content of one bottle should be

E = (10−2 kg)(4 × 107 J/kg) = 4 × 104 J.

This seems like a lot. However, as usual, we need to
compare it to something relevant. Electrical energy
is typically measured in kilowatt-hours (kWh). Given
that 1 kWh = 4× 106 J, the energy content of a plastic
bottle is 10−2 kWh. At $0.10 per kWh, this is about
one-tenth of a penny.

This is just a lower limit. The real value of the
recycled bottles is to replace the crude oil (and its
distillates) needed to make new plastic. The amount
of oil needed to make a plastic bottle will be more than
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one and less than a hundred times the bottle’s mass.
Taking the geometric mean, we should multiply the
energy value of the bottle estimated above by a factor
of ten. This means that the value of a recycled bottle is
an entire penny.*

We can check this estimate. At a penny per
10-g bottle, this implies a wholesale price for sorted,
shredded plastic of $1 per kg, or $1,000 per ton. As
of July 12, 2010, the recycled resin price for clear PET
bottles was about $0.50 per pound, or about $1 per kg
[16].

Note that we are ignoring the cost of transporting
that bottle to the landfill. The bottle would need to
be transported anyway, whether to the landfill or the
recycling center. The cost of the landfill itself is negli-
gible, as we only need a tiny part of the United States
(10−4) to landfill all of our trash for an entire century.

So how far should we be willing to walk to recycle
that water bottle? Let’s assume that we are selfless and
willing to put in one penny’s worth of our own effort
in exchange for one penny’s worth of benefit to the
environment. We need to estimate the value of our
time. The most convenient† measure of the value of
our time is the amount that our employers are willing
to pay us for it. The U.S. per capita gross domestic
product (as of 2008) was $40,000 [17]. This under-
states the average wage, because not all Americans
work for pay, yet it also overstates the average wage,
because it includes non-wage income. Fortunately, for
purposes of estimation, we don’t care (as it is probably
within a factor of two and certainly within a factor of
ten of the correct value).

Assuming 40 hours per week and fifty weeks per
year, that $40,000 per year translates to an hourly wage
* Although we are ignoring the cost to separate it, sort it, wash it,
and shred it.

† Although not necessarily the most accurate.
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of $20. At about 4,000 seconds per hour, 2 seconds of
our time is worth one penny (unless, of course, it is
time spent reading this book, in which case it is far
more valuable). At a normal walking pace, we can walk
about 3 m (10 ft) in 2 seconds. That is not very far.

There’s another comparison we canmake. If we use
one plastic water bottle per day, in one year that will
amount to a mass of

M = (10−2 kg/bottle) × (4 × 102 bottles) = 4 kg

of plastic. If we drive the average amount of 104 miles
per year at 20 miles per gallon, we consume 500
gallons or 2× 103 kg (2 tons) of gasoline per year. The
oil needed to make those four hundred water bottles is
negligible by comparison.

Now is it worth spending 10 whole minutes figur-
ing out how to recycle that bottle?
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

99 bottles of beer on the wall . . . 3.2
How far should you be willing to walk
to recycle a glass beer bottle?

HINT:Howmuchenergydoesittaketomakeaglass
bottle?

HINT:Glassismadefromsand.

HINT:Theheatcapacityofwateris1cal/g·◦Cor
4×103J/kg·◦C.

HINT:Whatisthecostofthatenergy?
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ANSWER: In the United States, recycled glass bottles
are crushed and used as raw material to make new
bottles. The value of a used glass bottle is then, at
most, the cost of its production. That includes the
value of its raw materials and of the energy needed
to transform those raw materials into glass. The raw
material is primarily silicon dioxide, otherwise known
as sand.* As this is the most common material in the
Earth’s crust [18], we will neglect its cost. The sand is
transformed into glass by heating it to about 1,500 ◦C.
In order to estimate the energy needed to make one
bottle’s worth of glass, we need to estimate the mass of
the bottle and the heat capacity of sand.†

I am not very good at estimating the mass of an
individual object, so let’s estimate how many bottles
weigh a pound (or mass a kilogram). There are more
than two and fewer than six bottles per pound (be-
cause an empty six-pack weighs more than a pound),
so let’s take the average of four bottles per pound (or
ten bottles per kilogram).‡

The heat capacity of water is 4 × 103 joules (or 103
calories) per kg per degree Celsius. This is one of the
highest heat capacities of any common material. Let’s
use a heat capacity for SiO2 that is a lot less than that
of water and is also a nice round number: c = 103
J/kg · ◦C.§

* Yes, I know this is imprecise nomenclature. “Sand” refers to the
size of the grain, rather than to the material. However, most sand
is quartz sand and is primarily composed of silicon dioxide.

† The heat capacity is the amount of energy needed to raise the
temperature of 1 kilogram of the material by 1 degree Celsius.

‡ I confess with shame that I cheated. After making this estimate,
I went home and weighed a beer bottle. (In the interests of
science, I emptied it first.) The bottle weighed 7 oz, or 0.2 kg.
Although this is within the upper and lower bounds, it is twice as
large as our estimated mass of 0.1 kg.

§ The actual heat capacity of SiO2 is 7 × 102 J/kg·◦C.
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Thus, in order to heat one bottle up to 1,500 ◦C, it
requires energy

E = cm�T = (103 J/kg · ◦C)(0.1 kg)(1,500 ◦C)

= 1.5 × 105 J.

This seems like a lot. However, as usual, we need
to compare it to something relevant. Since 1 kWh
(4 × 106 J) of electricity costs about $0.10, the energy
required to turn 0.1 kg of sand into 0.1 kg of glass is
less than one penny.

We have a recycling bin next to our garbage bin at
home. The effort needed to put a bottle in the recycling
bin is the same as the effort needed to put it in the
trash bin. However, when we are away from home, it
is just not worth trying to find a recycling bin for a few
pennies worth of glass.

How much effort are you willing to invest in order
to save a penny?
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Can the aluminum 3.3
How far should you be willing to walk to recycle
an aluminum can?

HINT:Eachaluminumatominbauxite(aluminumore)is
tightlybound.

HINT:Atypicalchemicalreactionin,e.g.,abattery,is1.5
electronvoltsperatom.
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ANSWER: The value of the aluminum is equal to
the cost of the raw material plus the energy needed
to process it. Aluminum is refined from bauxite ore.
Each aluminum atom is very tightly bound and much
harder to purify than, say, iron from iron ore. Energy
is supplied during the smelting process to free those
atoms. In order to estimate the energy needed, we need
to estimate the energy of a typical chemical reaction
and the number of reactions (i.e., the number of atoms
involved).

Fortunately, we have lots of chemical reactors close
at hand. The technical term for these reactors is “bat-
teries.” Common batteries convert chemical energy to
electrical energy. Each electron acquires an electrical
potential of 1.5 V, so each electron gains an energy
equal to 1.5 electron volts. Thus, we estimate that it
takes 1.5 eV to remove each aluminum atom from
bauxite.*

Now we just need to estimate the number of alu-
minum atoms. The atomic weight of aluminum is 27
(more than A = 1 for hydrogen and less than A =
200 for uranium), so 1 mole of aluminum contains
NA = 6 × 1023 atoms and has a mass of 27 g. Thus,
one kilogram of aluminum contains, 1000

27 = 40 moles
or 2 × 1025 atoms. This means that the energy needed
to purify 1 kg of aluminum is

E = (1.5 eV/atom)(2 × 1025 atoms/kg)
(6 × 1018 eV/J)

= 5 × 106 J/kg.

We should probably double that to account for ineffi-
ciencies in the processing.

Let’s check with reality before proceeding. The heat
of reaction for reducing aluminum oxide (Al2O3) is
about 30MJ/kg, or six times greater than our estimate.
* It also really helps to know the conversion from eV to joules:
1 J = 6 × 1018 eV.
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The actual electrical energy required to produce alu-
minum is about 50 MJ/kg. Our mistake was to use
the typical chemical reaction energy of a battery and
not account for the fact that aluminum oxide is much
more tightly bound.* (It is so tightly bound that it has
to be reduced electrically rather than chemically.)

Now let’s consider that soda can. A soda can weighs
about the same as a plastic water bottle (give or take a
factor of two), so we’ll use the same estimate of m =
10 g = 10−2 kg. Thus, the electrical energy needed to
produce the aluminum for our soda can is

E can = (5 × 107 J/kg)(10−2 kg) = 5 × 105 J.

That is also about one-tenth of a kilowatt-hour, or
about one penny. Even if we multiply this number by
four to account for nonelectrical costs, it’s still only a
few pennies.

* I am willing to take the blame this time.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Paper or plastic? 3.4
If the number of times we are asked a question is
related to its importance, then “paper or plastic?” is
the single most important environmental question of
our time. What is the total mass of all of the grocery
store plastic bags used by an average American in one
year? How does this compare with the other
hydrocarbon products we use?

HINT:Howmanygrocerystoreplasticbagsdoyouuse
eachweek?

HINT:Howmuchdoesarollofplasticbagsweigh?
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ANSWER: In order to estimate the mass of all the
plastic bags we use each year, we need to estimate the
number of bags we use and the mass of each bag.

The average American family of four* shops twice
per week† and buys ten plastic bags of groceries each
time. This means that they use

n = (2 trips/wk) × (50wks/yr) × (10 bags/trip)

= 103 bags/yr,

or about three hundred bags per person per year.
Therefore the 3 × 108 Americans will use

N = (300 bags/person · yr) × (3 × 108 persons)

= 1011 bags/year.

That is a huge number of bags. Before we jump to
conclusions, let’s estimate their mass.

There are different ways to estimate the mass of the
average grocery store plastic bag. One bag seems to
have about themass of one paper clip, or about 1 gram;
however, it is very difficult to compare the masses of
such disparate items. The stack of a hundred or so bags
in the grocery store has a mass of a few ounces (more
than 1 ounce and less than 1 pound). At about 30 g per
ounce, this also gives a mass per bag of about 1 g.

We can also estimate the mass from the product of
the volume and the density. One bag is about 30 cm ×
30 cm (or 1 ft × 1 ft). Estimating the thickness is more
difficult. Those one hundred bags in the grocery store
are about 1 cm thick (definitely more than 1 mm and
less than 10 cm), so each bag is about 10−2 m / 100 =
10−4 m thick. We can compare this to the thickness
of aluminum foil (≈ 25 × 10−6 m) or plastic wrap
(≈ 10 × 10−6 m). This gives a volume per bag of
*Making the very dubious assumption that my family is average.
† Less than that if they are organized and more than that if they
are disorganized.
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V = (0.3m)2(10−4 m) = 10−5 m3. As plastic has
about the same density as water (ρ = 1 g/cm3 = 103
kg/m3), this gives a massm = 10−5 m3 × 103 kg/m3 =
10−2 kg = 10 g. Let’s take the geometric mean of the
different estimates and usem = 3 g.

The mass of an individual American’s bags is

mbags =
(
300

bags
year

) (
3

g
bag

)
= 1

kg
year

.

Before we know whether this is a little or a lot, we need
to compare it to something else. Because plastic bags
are made from hydrocarbons, let’s compare this to the
mass of hydrocarbons we burn in our cars.

The average American drives about 104 mi/yr (us-
ing the average mileage used in car warranties).* Our
car or SUV gets about 20 mi/gal,† so it burns about

Vgas = 104 mi/yr
20mi/gal

= 500 gal/yr = 2 × 103 L/yr.

Given that gasoline has about the density of water,
each car burns about 2 × 103 kg per year of gasoline.
That is 2 tons per year.

This means that average Americans use thousands
of times less hydrocarbons in their grocery store plas-
tic bags than in their automobiles. Carefully keeping
our tires fully inflated will save far more hydrocarbons
than avoiding plastic bags.

Incidentally, a 120-page study by the Environ-
ment Agency in England [19] shows that conventional
(HDPE) plastic bags have much less overall impact on
the environment than the alternatives (biodegradable

* And no, we don’t care about the difference between 10,000 and
15,000 here.

† If your car gets 10 or 40 mi/gal, feel free to multiply or divide our
final numbers by two.
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plastic, paper, or reusable cotton bags).* We just did a
1-page study that shows it is not worth doing a 120-
page study.

Plastic bags are also a common form of litter. This is
a big problem in some places. However, as a reader of
this book, you carefully dispose of all your plastic bags
and can therefore guiltlessly choose whichever type of
bag is more convenient for you.

* That is not even including the need to wash those reusable bags
to reduce bacterial contamination [20].
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Paper doesn’t grow on trees! 3.5
How far should we
be willing to walk
to recycle that one
hundred–page
report?

HINT:Howmuchdoesanewreamofpapercost?

HINT:Whatfractionofthepapercostsarerawmaterial
costs?
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ANSWER: Why are you throwing out that one
hundred–page report? Paper doesn’t grow on trees!
Oh. Wait a minute. Paper does grow on trees. Maybe
we should try to figure out the actual value of one
hundred sheets of used office paper.

As usual, we can try different approaches. We can
start from the cost of new paper; we can try to estimate
the cost of the raw materials the used paper replaces;
or we can look it up.

When paper is recycled, it is reduced to pulp and
then processed to remove contaminants like ink and
toner. This means we should estimate the cost of
growing, harvesting, and processing trees. It will be
much easier to start with the cost of new paper, which
already incorporates all of that. A ream (five hundred
sheets) of copier or printer paper costs about $3 (more
than $1 and less than $10). Most of the cost of that
paper will be processing the wood pulp into paper,
shipping it, and selling it. The cost of the pulp (and
hence its value when recycled) will be somewhere
between 1% and 100% of the cost of the paper, so we
will estimate 10%. This means that the pulp to make
one hundred sheets of paper costs

C = $3 × 10% × 100 sheets
500 sheets

= $0.06

Now let’s compare to reality. Collected and sorted
white office paper is worth about $100 per ton or $0.1
per kg. That means that we need to know the mass
of the paper. We can estimate that by hefting a ream
and estimating that it weighs a few pounds or a couple
of kilograms. If we want to be more precise, we can
estimate its volume and density. One ream of paper
has a volume of about

V = 2 in × 8.5 in × 11 in = 5 cm × 20 cm × 25 cm

= 3 × 103 cm3
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and a density close to that of water, ρ = 103 kg/m3 =
1 g/cm3. The mass of a ream is then m = 3 × 103 g =
3 kg. That one hundred–page report will have a mass
of 0.5 kg. That implies its value is $0.05. Don’t take any
paper nickels.

If our time is worth $30 per hour (more than $10
and less than $100) or $20 per hour (the U.S. average
GPD per capita of $40,000 divided by the 2,000 hours
of work per year), $0.1 is worth 10 or 20 seconds. So it
probably is worth recycling that thick report. But it is
not worth worrying too much about 10 measly cents.

Note that our Sunday newspaper is probably worth
about the same. It has two to three times the mass, but
the paper is much lower quality.

85





¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The rain in Spain . . . 3.6
How much water
can we collect
from our rooftops?
How does this
compare to the
water we use
each year?

HINT:Whatistheareaoftheroofofahouse?

HINT:Howmuchrainfallseachyear?
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ANSWER: In order to estimate the amount of water
we can collect from our rooftops, we need to estimate
the area of the roof and the amount of rain that falls
each year. Because most Americans live in single-
family homes, we will ignore apartments (for now).
The average American single-family home has about
2,000 square feet of living space (more than 103 and
less than 4× 103) [17] and has two stories. This means
that each home has about 103 square feet or 102 m2

of roof. Now we just need the average annual rainfall.
The majority of the U.S. population lives near a coast
(East, West, or Gulf). I live on the East Coast, where
our annual rainfall is about 1 m (40 inches). However,
the annual rainfall in Los Angeles is less than half of
that [21]. Let’s use 1 m, as it is a nice round number.
Feel free to adjust the results for your local rainfall.

This means that the annual volume of rain that falls
on American homes (at least those east of Texas and
the Dakotas or in the Pacific Northwest) will be about

V = Ah = (100m2)(1m) = 102 m3.

At 103 L per m3, this is a 105 liters or 2 × 104 gallons.
Now let’s compare this to the water we use. We

can estimate this several ways. We can consider the
number of times we flush the toilet daily (at 3 gallons
per flush), the length of time we spend showering (at
3 gallons per minute), the time spent watering the
lawn (at 5 gallons or more per minute), the number
of washing machine or dishwasher loads (at 10 to 20
gallons per load), etc. If we each flush the toilet three
times per day, shower 10 minutes per day, water the
lawn 5 minutes per day (more in the summer and less
in the winter), and wash two loads each of clothes
and dishes per week, that adds up to 70 gallons per
person per day. Alternatively, we could look at our
most recent water bill (and then remember how to
convert from cubic feet to gallons).
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Now we just need to convert from gallons per day
to cubic meters per year. Here goes:

V = 70
gal
day

× 400 day
1 yr

× 4 L
1 gal

× 1m3

103 L

= 102 m3/yr.

This means that, even on the relatively wet East Coast,
the roof of an average house can only collect enough
water for one of its inhabitants. In drier Los Angeles
the roof of an average house can only collect enough
water for about a third of a person.*

* Or half a person, if the residents don’t water the lawn.
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Bottom feeders 3.7
How many oysters would it take to keep the
Chesapeake Bay clean and clear?

HINT:WhatisthevolumeoftheChesapeakeBay?

HINT:Howmuchwaterdoesanoysterfilter?

HINT:Howfast(inm/s)doestheoysterpasswaterover
itself?Whatisthewaterflowarea?

HINT:HowoftenshouldtheChesapeakeBaywaterbe
filteredtostaycleanandclear?
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ANSWER: Oysters are filter feeders. They pass water
over their gills and trap suspended particles (both
edible and inedible) on the surface mucus, excreting
the waste as feces. Thus, oysters efficiently remove
suspended particles from water.

In order to estimate the number of oysters needed
to keep the Chesapeake Bay water clean and clear,
we need to estimate three quantities, the volume of
the bay, the rate at which oysters process water, and
frequency with which bay water should be cleaned.
Here we go.

The Chesapeake Bay stretches from Norfolk and
Virginia Beach in the south, pastWashington and Bal-
timore, to almost the Mason-Dixon line (the Mary-
land/Pennsylvania border). If you’re from the area,
you might know that you can drive from one end to
the other in 3 or 4 hours. Otherwise, we could estimate
that the distance is about 10% of the Atlantic coastline
(about 1,500 miles). In either case, we’ll estimate the
length is about 200 miles (300 km). The bay is rel-
atively narrow, so the average width is about 30 km
(more than 10 km and less than 100 km). The bay is
also relatively shallow, with a depth between 10 ft and
1,000 ft. Taking the geometric mean gives a depth of
100 ft (30 m). This means that the volume of the bay is

VBay = (3 × 105 m)(3 × 104 m)(30m)

= (3 × 1011 m3).

Hmmm. It looks like we will need a lot of oysters.
You probably never thought you would be called

upon to estimate the flow of water through an oyster.
However, as usual, we can place some reasonable
bounds. The first step is to break the problem into
two pieces: the speed of the water (in m/s or mph)
and the cross-sectional area of the water flow from
which food particles can be extracted. The water will
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flow relatively gently, so that the particles have time
to get trapped in the mucus. This implies a flow that
is slower than a brisk walk (5 mph or 2 m/s) but faster
than a snail’s pace (1 cm/s), giving an estimated flow of
v = 0.1m/s. The cross sectional area will bemore than
(1 mm)2 = 10−6 m2 and less than (1 cm)2 = 10−4 m2,
giving an area A = 10−5 m2. This implies a volume
flow rate of

F = vA = (0.1m/s)(10−5 m2) = 10−6 m3/s

= 4 × 10−3 m3/hr,

or 4 liters per hour.
Now we need to estimate how often the bay water

should be filtered to keep it clean and clear. Perhaps
the bay should be cleaned as often as I vacuum my
house (or as often as I should vacuum my house).* As
usual, whenwe do not know the answer, we can at least
bound the problem. Filtering once a day is probably
too frequent, once a month is probably too infrequent,
and once a year is definitely too infrequent. Taking the
geometric mean of one and one hundred days gives a
desired filtering period of ten days.

In ten days, one oyster will filter a volume of

V10 day
oyster = (10 days)(24 hr/day)(4 × 10−3 m3/hr)

= 1m3.

This means that in order to filter the volume of the bay
every ten days, we will need

Noyster = VBay

V10 day
oyster

= 3 × 1011 m3

1m3 = 3 × 1011.

That is rather a lot of oysters.

* This is a silly comparison, as the physical processes and rates of
dirt accumulation in my house and the bay are quite different
(I hope).
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Of course, because the Chesapeake Bay is the
largest estuary in the United States, we should calcu-
late the oyster density rather than the absolute number
of oysters. The area of the bay is Abay = (3×105 m)(3×
104 m) = 1010 m2. Thus to clean the bay, we will need
an average oyster density of

doyster = Noyster

Abay
= 3 × 1011 oysters

1010 m2 = 30 oysters/m2

OK, that is still a lot of oysters.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

You light up my life! 3.8
How does the cost of lighting using
incandescent light bulbs compare with
the alternatives, such as candles, compact
fluorescents, or LED “light bulbs”?

HINT:Thetotalcostofabulbincludesthepurchase
price,theinstallationcost,theoperatingcosts,thechange
intheheatingandcoolingcosts,andthedisposalcost.

HINT:Thepowerratingofabulb(e.g.,100W)indicates
thepowerconsumed,notthelightemitted.

HINT:Incandescentlightbulbsconvertabout2%ofthe
powertheyconsumetolight.

HINT:Electricitycostsabout$0.1perkilowatt-hour.

HINT:Allofthepowerconsumedbyalightbulbendsup
asthermalenergy.

HINT:Anincandescentbulblastsabout1,500hours.
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ANSWER: The total cost of a light bulb includes the
purchase price, the installation cost, the operating
cost, the change in the heating and cooling costs, and
the disposal cost (not to mention the cost of all the
stupid light bulb jokes such as “How many Guessti-
mation authors does it take to change a light bulb?”).*
Let’s consider a standard 100-W incandescent light
bulb and its alternatives over a period of 10,000 hours.

An incandescent light bulb heats its filament (usu-
ally tungsten) to a temperature of about 3,000 ◦C
where it becomes white hot. This is the same process
by which the sun emits light, although the surface of
the sun is a bit warmer at 5,500 ◦C.† That is why in-
candescent light is similar to daylight. All of the power
consumed by the light bulb is radiated; however, most
of that power is radiated in wavelengths that we cannot
see.

Incandescent light bulbs are cheap; they cost about
$1 each. I’ve been buying light bulbs recently, so I
know that their lifetime is 1,000 to 2,000 hours. If
you haven’t memorized light bulb lifetimes, then you
can estimate it from the frequency with which you
change light bulbs. Incandescent light bulbs need to
be changed about yearly (less than monthly and more
than decadely). If the bulb is only on in the evenings,
then in one year it is on for

t = (4 hrs/day) × (400 days/yr) = 1,600 hrs/yr.

Using t = 103 hours for ease of calculation, over its
lifetime a 100-W bulb will consume energy

E100W = P t = (100W) × (103 hr) = 105 W · hr
= 102 kWh.

* More than 0.1 and fewer than 10, so we’ll estimate one.
†We should really use the Kelvin absolute temperature scale,
where the temperature in Kelvin equals the Celsius temperature
plus 273. However, this is needlessly precise for these high
temperatures.
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At approximately $0.1 per kWh, that $1 light bulb will
consume $10 of electricity.

There are also installation and disposal costs. It
takes about 5 minutes to install a single light bulb
(removing the shade or cover, removing the old bulb
and throwing it out, hunting in the closet for a new
bulb, installing the new bulb, replacing the cover). If
we value our time at our average hourly wage (more
than $10 and less than $100), then it takes about $3 of
our time ($30 × 5/60) to install a light bulb.*

Because the energy consumed by the incandescent
light bulb dominates its cost, we should also consider
the heating and cooling costs it incurs. In the winter,
the power consumed by the light bulb helps heat the
room. In the summer, the power consumed by the
light bulb needs to be removed from the room by the
air conditioner.

Let’s consider winter first. If we use electric heat to
warm our house, then the light bulb is just another way
to convert electrical energy into heat and is basically
free. If our heat source costs one-half of electric heat-
ing, then every dollar spent on electric light reduces
our heating bill by $0.50.

Now let’s consider summer. An air conditioner is
a heat pump. You put energy into the air conditioner
and it pumps energy out of your house. The energy
efficiency ratio (the energy removed divided by the
input energy) will be more than 1 and less than 10,
so we will use the geometric mean of 3. This means
that for every joule of energy used to run the pump, it

* Obviously, if we install more than one bulb at a time, it will take
a lot less than 5 minutes per bulb. This is why smart companies
wait until a certain percentage of the light bulbs in an area are
burned out (say 20%) and then replace all of the bulbs in the area
at the same time. The labor savings from replacing one hundred
bulbs at a time vastly exceeds the value of the remaining bulb
lifetime.
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pumps 3 joules of heat out of the house.* Thus, in the
summer the air conditioning needed to compensate
for the light bulb’s power will consume an extra 30%.

Phooey. Because the additional heating and cooling
power consumption are both a fraction of the light
bulb power consumption and because they offset each
other, we will ignore all of it.

Including the initial cost, installation, and oper-
ating expenses, the total system cost of operating a
100-W light bulb for 103 hours (about a year) is $1 +
$3 + $10 = $14, which we will round off to $10.

Now let’s consider candles. One candle emits about
as much light as a 4-W night light. This means that
we will need at least twenty-five candles to produce as
much light as a 100-W light bulb. A medium-size (2-
cm diameter, 10-cm height) plain candle lasts between
1 and 10 hours. Thus, in order to replace a single
1,000-hour 100-W bulb, we will need

Ncandles = 100W
4W

× 103 hr
3 hr

= 104.

Even at $0.1 per candle, that will cost $1,000 (not to
mention the added insurance expense after we burn
down our house a few times). There’s a reason why we
no longer prefer candles for illumination.

Now let’s look at other alternatives. Fluorescent
bulbs emit light in two steps. Passing an electric
current through mercury vapor causes the mercury
to emit light at specific wavelengths, some in the
ultraviolet and some in the visible range. The ultra-
violet light is then absorbed and reemitted at visible
* The efficiency is measured by the EER, energy efficiency ratio of
the thermal energy (heat) removed to the power consumed.
A typical EER for a room air conditioner is about 10.
Unfortunately, that ratio is in (BTU/hr)/watt. In order to convert
to a real efficiency, we need to multiply by 0.3. This means that
an air conditioner with an EER of 10 can remove 3 joules of
thermal energy for each joule of electrical energy consumed.
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wavelengths by specific fluorescent coatings on the
inside of the bulb. The coatings are chosen to optimize
some combination of the total light output (the effi-
ciency), the light quality (whiter or bluer or warmer),
and the cost. A compact fluorescent light bulb (CFL)
is just a fluorescent bulb twisted into a compact shape
so that it can replace standard incandescent bulbs.
Because the light quality differs from daylight and
depends on the coatings, some people dislike the light
emitted by CFLs.

A CFL is several times more efficient than an in-
candescent bulb (the packaging will say things like
“22 W provides the same light as a 75-W bulb”)
and significantly more expensive (about $5 to $10). It
also claims to have a much longer lifetime of about
104 hours. This means a 100-W equivalent CFL will
consume

ECFL = 100W
4

× (104 hr) = 2.5 × 105 W · hr
= 300 kWh

during its lifetime. That will cost about $30 for 104
hours, or about four times less per hour than the
incandescent bulb. The installation cost should be the
same. However, because the CFL contains mercury,
there are (or at least should be) extra disposal costs
involved. These should be small compared to the total
system cost of operating a CFL for 104 hours of $10 +
$25 + $3 = $40. Thus compared to an incandescent
bulb of the same brightness, it costs about three times
as much to operate a CFL for ten times longer.

We should compare the lighting sources over a
reasonable time period such as one year, not over their
expected lifetimes. Assuming that a light is used for
1,600 hours per year, a 100-W incandescent bulb will
cost $20, and the equivalent CFL will cost only $6.
If we leave ten lights on for 4 hours a day, replacing
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incandescents with CFLs will reduce our lighting costs
from $200 to $60 and save $140 per year.

Comparing LED lights is more difficult because
the technology is changing rapidly. Efficiencies are
increasing, and prices are dropping.

However, by switching from candles to incandes-
cents to CFLs (and that is not even considering whale
oil), we have already reduced our lighting expenses
(for the equivalent of ten 100-W incandescents) from
$104 to $200 to $60 per year. Compared to the ap-
proximately $103 we pay for gasoline (500 gallons per
year at $2 per gallon) and the $103 we pay for heating
and cooling our homes, the $60 cost of CFL lighting is
negligible.

At that point, cost is no longer a reason to switch
lighting technology. If we switch to LED lighting, we
will do it to improve light quality, to replace mercury-
containing CFLs, and to increase bulb lifespan.
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The Five Senses

Chapter 4
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



We view the world through our senses. Our eyes can
see at noon and at midnight. Our ears can hear a
whisper and a rock concert. Our senses have a remark-
able range and sensitivity. Let’s explore that in this
chapter.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Don’t stare at the Sun 4.1
What is the maximum amount of light that our eyes
can tolerate, even briefly?

HINT:TheanswershouldbeinunitsofpowerorW.

HINT:ThepoweroutputdensityoftheSunis103W/m2

attheEarth’sorbit.

HINT:Whatistheareaofthepupilonasunnyday?
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ANSWER: We need to estimate the power output of
the brightest light we can look at and the area of our
pupil. Because we can look directly at the Sun (at least
for very short periods of time),* the maximum power
density we can tolerate is less than or equal to the solar
constant, which is about 103 W/m2.† At this level of
light, the pupil is as constricted as possible so that it
is 2–3 mm across, and its area is about 5 mm2, or
5 × 10−6 m2. This means that the power of the light
entering the eye is

P = (103 W/m2)(5 × 10−6 m2) = 5mW.

Note that this is about the same as the 5 mW max-
imum power of standard laser pointers. This is also
why you should not shine laser pointers in people’s
eyes.

* Please don’t try this at home.
† If we want to be a little more precise, then we should divide this
by two to account for the power at the Earth’s surface (at noon in
the summer).
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Men of vision 4.2
What is the minimum amount of light that our
eyes can detect?

HINT:TheanswershouldbeinunitsofpowerorW.

HINT:Wecandetectabout10photons.

HINT:Visiblephotons(unlikeultravioletphotons)donot
havequiteenoughenergytocausemostchemical
reactions(likesunburns).

HINT:Visiblephotonshaveanenergyofabout1eV.
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ANSWER: In order to determine the minimum
amount of light we can detect, we need to estimate
the fewest number of photons* we can detect, the
energy per photon, and the time interval. In order to
see in the dark and not get eaten by predators,† the
minimum number of photons should be as small as
possible. In order to limit false alarms, the minimum
number should be significantly more than one. Ten is
a reasonable compromise between seeing things that
are not there and not seeing things that are there. The
minimum flash of light that we can perceive (after our
eyes are fully dark-adapted) is about 10 photons.‡

Now we just need to estimate or calculate the en-
ergy of one visible photon. There are a few ways to do
this. The simplest way is to remember that a chemical
reaction is about 1.5 electron volts (eV), because a
standard AA- or D-cell battery uses chemical reactions
to achieve an electrical potential of 1.5 V. A visible
photon cannot cause most chemical reactions, but an
ultraviolet one can (think about sunburns). Thus, a
visible photon will have an energy of about 1 eV.

To convert from the microscopic electron volts to
the macroscopic joules, we use

1 J = 6 × 1018 eV.

This is a very useful number that we will use often. If
there is still room on your shirt cuff, please record it
there. Thus, we estimate that a visual photon will have

* Light is composed of particles called photons. We do not perceive
individual photons because there are normally so many of them.

† Evolutionary pressures have changed somewhat in the past few
years.

‡ Back in the early days of nuclear physics, Ernest Rutherford’s
assistants detected subatomic particles by observing the tiny flash
of light emitted when the particle struck a zinc-sulfide screen.
That was when physicists were men of vision.
And yes. Back then they were almost all men.
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energy

Ephoton = 1 eV
6 × 1018 eV/J

= 2 × 10−19 J.

The other method requires a little more specialized
knowledge.* The wavelength of visible light is about
λ ≈ 500 nm (5 × 10−7 m). If we remember Planck’s
constant (and doesn’t everyone?), h = 7 × 10−34 J-s,
then we can use

E = hν = hc
λ

= (7 × 10−34 J-s)(3 × 108 m/s)
5 × 10−7 m

= 4 × 10−19 J.

Note that our first estimate is too low by a factor of
two. Oops. The mistake is less than a factor of ten, so
let’s not lose too much sleep over it.

Now we need to estimate the resolving time of the
human eye. We cannot resolve (that is, see) individual
movie frames at 22 frames per second but we can
resolve things that happen a few times per second.
Thus, let’s use a resolving time of about 0.1 s and
assume that all ten photons must arrive in this time.

Now we can convert the photon energy to power.
Ten photons in 0.1 s gives a minimum detectable
power of

P = (10 photons)(4 × 10−19 J/photon)
(0.1 s)

= 4 × 10−17 W.

Thus, the human eye (when properly dark- or light-
adapted) can sense power levels from 5 × 10−3 W to
4 × 10−17 W. Wow! That is a range of 1014, or 100
trillion. That is a truly amazing feat of engineering!

* That’s a hint that you can safely ignore the rest of this paragraph.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Light a single candle 4.3
How far away can we see a candle burning on a clear,
dark night? Assume we are far away from all other
forms of illumination.

HINT:Howmuchlightdoesacandleemit?Compareitto
a4-Wnightlight.

HINT:Howmanyphotonspersecondisthat?

HINT:Howlargeisourpupilwhenfullydark-adapted?
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ANSWER: To answer this, we need to estimate the
light output of a candle, the sensitivity of the human
eye when fully dark-adapted, and the light-collecting
area of the eye. In the previous problem we estimated
that the human eye can detect ten photons arriving in
0.1 second, corresponding to a power of

P = 4 × 10−17 W.

When completely dark-adapted, the human pupil
is about 5 mm (almost 1/4 inch) in diameter, giving it
an area of A = 25mm2 = 2 × 10−5 m2. This means
that we can detect a power density of

p = 4 × 10−17 W
2 × 10−5 m2 = 2 × 10−12 W/m2.

If this power density covered the Earth, it would
correspond to a total light power of P = pA =
(2 × 10−12 W/m2)(4 × 1014 m2) = 103 W. That is
1 square meter of sunlight spread out over the entire
surface of the Earth!

Now let’s estimate the light flux from a candle. A
candle puts out about the same amount of visible light
as a 4-W incandescent night light. The efficiency of
an incandescent bulb is quite low, only a few percent.
This means that the candle or 4-W night light emits
only about 0.1 W of photons.*

Now we can estimate the maximum distance at
which we can detect the candle. At a distance r from
the candle, the power output of the candle is spread
out over a sphere of radius r and area A = 4πr 2.
Thus, the power density of the candle at a distance r

* If we remember the definition of a candela (which I just looked
up), we would know that a common candle puts out 1

683
W/steradian. With about 12 sr in a sphere, that amounts to a total
light output of about 0.02 W, so our estimate is within a factor of
five.
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is p = 0.1W/(4πr 2) so that

r =
√
0.1W
4πp

.

Owing to use of a square root in this equation, errors
of a factor of four in either the power output of
a candle or the minimum power detectable by the
human eye will cause an error of only a factor of
two in the maximum distance. The maximum r will
correspond to the minimum detectable p so that

rmax =
√

0.1W
4π(2 × 10−12 W/m2)

=
√
2 × 109 m2

= 5 × 104 m
= 50 km.

This is rather a lot. At this distance, we will also
need to include the effect of atmospheric attenuation.
This will reduce the distance somewhat (depending on
humidity and pollution). Note that at this distance, we
will only be able to dimly perceive the candle by not
looking at it directly.

This visibility of faint lights over very long distances
is why cities subject to air raids in World War II were
so careful about maintaining total blackouts.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Oh say can you see? 4.4
What is the maximum
angular resolution of the
human eye? What
biological or physical
characteristics limit this
resolution?

HINT:Whatisthesmallestthingwecanseeatadistance
of1m?

HINT:Howlargearetherodandconecellsintheretina?

HINT:Howlargeistheretina?
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ANSWER: The resolution of our eye refers to the
smallest item we can see at a certain distance. The size
of the item will depend on the distance. We might
be able to see a mosquito on our arm but not the
same mosquito 10 feet away on our friend’s arm. In
general, the shorter the distance, the smaller the object
we can see.* Typically, if we can see a 1-mm object
at a distance of 1 m, we can see a 10-mm object at a
distance of 10m and a 1-m object at a distance of 1 km.
For objects that are much smaller than the distance to
them, their angular size is simply θ = size/distance.†

We can estimate the angular resolution of the eye
either by measurement, from biology, or from physics.
Let’s do all of them.

If we hold a meter stick at arm’s length (about 1 m
away), we can easily resolve the individual millimeters,
each of which subtends an angle θ = 1 mm / 1 m
= 10−3 rad, and we can also resolve the mm lines
themselves, which are about ten times smaller. This
means that the angular resolution of the eye is about
10−4 rad, or about 6 × 10−3 degrees.‡

The biological limit on the angular resolution of
the eye is the number of pixels. The detectors in
digital cameras are measured in pixels. That is the
number of independent sensors in the focal plane of
the camera. The more pixels, the better the resolu-
tion. The eye also has pixels, known as rod and cone
cells, in the retina. The size of a typical cell is a few
micrometers. We can estimate this size from looking
through microscopes at cells. Because the wavelength
of visible light is about 0.5µm,§ anything we can see

* Except for those of us older folks with presbyopia, who cannot
focus on close objects.

† The angle θ is measured in radians, where 1 radian ≈ 60 degrees.
‡ That is about 20 arcseconds, for ancient Babylonians,
astronomers, and others who use base 60.

§ That is one of the useful numbers to write on your shirt cuff.
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with a light microscope* must be at least that large.
We can see structures about one-tenth the size of the
cell. Therefore the cell is at least 10 wavelengths in
diameter, or 5µm. (Note that the actual diameter of
cone cells ranges from 0.5 to 4µm. They are about
50µm long.)

The diameter of the eyeball is about 1 inch, 3 cm, or
3× 10−2 m. Thus, each cone cell subtends an angle on
the back of the eyeball (the retina) of

θ = 2 × 10−6 m
3 × 10−2 m

= 6 × 10−5 rad

as seen from the pupil.
An alternative method to determine the angular

extent of one cone cell is to measure the size of our
visual field. As I type this in a classroom, I can see
the entire 20-feet width of the rear wall (while staring
fixedly at a single point), which is about 20 feet from
me. (I am using English units, as my rulers are the 2-
foot square ceiling tiles.) This is equivalent to standing
at one point of an equilateral triangle and looking at
the far side of the triangle, which is about 20 feet from
me, so that my field of vision covers an angular range
of about 60◦. This 60◦ (or 1 rad) maps to about 2 cm of
retina so that a 2 × 10−6-m diameter cone cell covers

θ = 2 × 10−6 m
2 × 10−2 m

(1 rad) = 10−4 rad.

Thus, even if our lens and cornea could focus light
perfectly, the size of our pixels limits our visual acuity
to 10−4 rad.

The physics limit comes from the bending of light.
Because light is a wave, it bends (diffracts) as it passes

* Or with a heavy one.
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through any aperture.* Just as water waves spread out
as they pass a barrier and sound waves spread out as
they pass through a doorway, light waves spread out
as they pass through an aperture. This means that, no
matter how perfectly the lens and cornea focus the
light entering the pupil to a single spot, that light will
still spread out over some angle θ . The angular spread
(diffraction limit) for any circular aperture is

sin θ ≈ λ/d,

where θ is the amount that the light spreads out (in
radians), λ is the wavelength of visible light, and d is
the aperture of our optical instrument (e.g., our eye).

Trig functions are scary when we are trying to
estimate. Fortunately, sin θ ≈ θ when θ < 0.5 rad
(or 30◦), so we can replace sin θ with θ .†

Visible light has a wavelength of between 0.4 and
0.7µm, so we will use λ = 5 × 10−7 m. The diameter
of the pupil depends on the level of ambient light but
is typically between 2 and 5 mm. Thus,

θ = λ

d
= 5 × 10−7 m

5 × 10−3 m
= 10−4 rad.

All three methods agree. This is unsurprising, as we
expect that evolution would optimize the number of
pixels and the design of the eye to take advantage of
the maximum physically possible resolution.

* Yes, I know that in previous questions we used the fact that light
is a particle. Light is both a wave and a particle. In general, light
travels as a wave and interacts as a particle.

†Mathematics students are taught that sin θ = θ when θ � 1.
However, sin(0.5) = 0.48. Thus, even when θ is as large as 0.5,
the difference between θ and sin θ is only 4%. That is definitely
close enough for this book.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Bigger eyes 4.5
While we’re on the subject of optical resolution,
what size telescope aperture is needed to see a
possible Earth-like planet
circling a nearby star?

HINT:Assumethatwecancollectenoughlighttoseethe
planet,butthatweneedenoughresolutiontodistinguish
itfromitsstar.

HINT:Nearbystarsareafewlight-yearsaway.

HINT:TheEarth-likeplanetwillbeaboutthesame
distancefromitsstarastheEarthisfromtheSun.
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ANSWER: In order to see a planet circling its star,
we need to have enough angular resolution that the
two objects are well separated. There are two angular
sizes involved. One is the angular separation between
the planet and the star. This determines whether we
can see both objects separately or whether they are
smeared together. The other is the angular size of the
planet. If our angular resolution is, say, one hundred
times the size of the planet, then the already relatively
dim light of the planet will be smeared out over a
larger area and will appear even dimmer relative to
the very bright star. Therefore, even if we have enough
angular resolution to separate the planet and the star,
we would still want to improve our resolution to better
see the planet.

Let’s start with the angular separation of the planet
and the star by assuming that the planet is one Earth-
orbit (1 astronomical unit [AU]) from its star and that
the star is “nearby.” This means that the planet is 93
million miles, or 1.5 × 1011 m, from the star and that
the star is about 10 light-years from us. One light-year
is the distance that light travels in one year. The speed
of light is c = 3 × 108 m/s, and the time is one year =
π ×107 s, so 1 l-y= (3×108 m/s)(π ×107 s) = 1016 m.
This means that the angular separation between the
planet and its star is

θ = size
distance

= 1.5 × 1011 m
10 × 1016 m

= 10−6 rad.

This is only one hundred times better than the reso-
lution of the human eye. Given that the angular reso-
lution θ ≈ λ/d, this means that we need a telescope
with an aperture of

d = λ

θ
= 5 × 10−7 m

10−6 rad
= 0.5m,
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which is one hundred times larger than the human eye.
That is not much. The 5 m telescope on Mt. Palomar
was built more than sixty years ago but has never
directly seen planets. This estimate is clearly much too
small.

There are two problems with this estimate. The
first is that the diffraction formula we used, θ ≈
λ/d, applies only to separating two objects of similar
brightness. If one object is much brighter than the
other, then we need much more separation to distin-
guish them. The second problem is that because the
planet is so dim, we want to collect a lot of light and
also minimize the size of its image to concentrate that
light in a small region.

Ideally, the telescope’s resolution would equal the
angular size of the planet. Because the diameter of
Earth is d = 6 × 106 m, the ideal angular resolution is

θ = 6 × 106 m
10 × 1016 m

= 6 × 10−11 rad.

This is about 1 million times better than the resolution
of the human eye. This implies a telescope aperture of

d = λ

θ
= 5 × 10−7 m

6 × 10−11 m
= 104 m.

Hmmm. A 10-km aperture telescope. This could be
difficult. The largest telescope in use today is about
10 m. Fortunately, this is a goal rather than a require-
ment.

This indicates the difficulties of directly imaging
Earth-like planets circling other stars at Earth-like dis-
tances. As of the time of this writing, while scientists
have detected many exo-planets, they seen only have a
few Jupiter-like planets directly.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

They’re watching us! 4.6
What size camera aperture
is needed to read a license plate
from a camera in low Earth orbit?

HINT:Assumethatthecameralensfocusesperfectlyso
thattheresolutionisonlylimitedbythediffractionoflight
asitpassesthroughtheaperture.

HINT:Howfarawayisthecamera?

HINT:Howthickarethenumbersandlettersonalicense
plate?
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ANSWER: In order to determine the camera aperture,
we need to estimate the angular resolution required
to read the license plate. This means that we need to
estimate the distance from the camera to the license
plate and the spatial resolution required to read the
license plate.

Let’s start by estimating the height of a satellite in
low Earth orbit (LEO). There are several ways to do
this. We might remember that LEO is about 300 km
(200 mi) high. We might remember that outer space is
defined as starting at 100 km above the surface. If we
don’t remember either of those, we can consider the
atmosphere.

In order to stay in orbit, the satellite must be
above almost the entire atmosphere so that there is
almost no air to slow it down. Let’s estimate the
height of the atmosphere. The density of air on the
top of Mt. Everest is about one-half the density of
air at ground level (this is why most climbers on Mt.
Everest use oxygen bottles). Mt. Everest is 10 km tall.
Assuming that the density of air decreases by a factor
of two for every 10 km, this means that it decreases
by a factor of 210 ≈ 103 for every 100 km. Thus it
decreases by a factor of 106 at 200 km and by a factor
of 109 at 300 km.

Let’s be safe and place our satellite 300 km above
the Earth’s surface.

Now let’s estimate the resolution needed to read
a license plate. The license plate letters and numbers
are about 1 cm thick, so 1-cm resolution should be
good enough. Alternatively, the display size needed to
create readable characters is approximately five pixels
by eight pixels. Because license plate characters are
about 2 inches (5 cm) by 4 inches (10 cm), 1-cm
resolution would imply a 5- by 10-cm display and
should be quite readable.
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This means that we need an angular resolution of

θ = size
distance

= 10−2 m
3 × 105 m

= 3 × 10−8 rad,

or about 104 times better than the human eye. In order
to achieve that resolution, we need a camera aperture
of

d = λ

θ
= 5 × 10−7 m

3 × 10−8 rad
= 20m.

The Hubble Space Telescope has a 2.4 m aperture.
This camera aperture is on the boundary of the pos-
sible. Now we would need to do a lot more work
to determine the precise aperture needed. Among
other things, we would have to figure out the exact
spatial resolution needed to read license plates; the
exact height of the satellite; and the exact relationship
between aperture, resolution, and wavelength. All that
is way beyond the scope of this book.

This is one of those few questions where the answer
is in the “just right” Goldilocks category.

Oh well.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Beam the energy down, Scotty! 4.7
How large (in area) a receiving antenna would
we need to receive the power beamed down
using microwaves from a 1-GW (109 W)
solar-power satellite in geostationary orbit?

HINT:Thisisjustanotherquestiondealingwith
electromagneticwavesandapertures.

HINT:Geostationarysatellitesorbitabout4×104km
fromEarth’scenter.

HINT:Howmuchareawouldthesatelliteneedtocollect
allthatsolarenergy?

HINT:ThesolarpowerdensityatEarthorbitisabout
103W/m2.

HINT:Microwaveshaveawavelengthofabout1cm.

HINT:Howmuchwouldthebeamfromthesatellite
spreadoutasittraveledtoEarth?
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ANSWER: This is just another question dealing with
electromagnetic waves and apertures. The microwaves
will be beamed down from a radio-dish antenna
mounted on the satellite. Because the beamwill spread
out as it travels, we will need a large receiving an-
tenna on the Earth. The radio-dish antenna aperture
will determine how much the beam spreads, using
the now-familiar formula, θ = λ/d, where λ is the
microwave wavelength and d is the diameter of the
radio-dish. The diameter of the beam on its target* is
then the angular spread times the distance traveled.
This means that we need to estimate the diameter of
the solar-power satellite’s antenna, the wavelength of
microwaves, and the distance from the satellite to the
Earth.†

This problem is a little more complicated than the
others, but we should be able to handle it now. Here
we go.

Let’s start with the size of the solar-power satellite.
We want to collect 1 GW of power. Given that the
solar power density at Earth orbit is 103 W/m2, at
100% efficiency we will need an area of

A = 109 W
103 W/m2 = 106 m2 = 1 km2.

However, the efficiency will be a lot less than 100%
and a lot more than 1%. Let’s take the geometric mean
and estimate 10%. This means that our solar-power
satellite will need ten times more area, or

A = 107 m2 = 10 km2.

That is a lot of area and significantly more than we can
achieve today.
* In this case, it is the Earth; in the case of the eye, it is the retina.
† Note that the beam from a larger transmitting antenna will spread
less. This means that if we increase the size of the transmitting
antenna, we can decrease the size of the receiving antenna.
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In order to estimate the wavelength of microwaves,
we can use several different methods. The most fun
method is to spread popcorn kernels evenly on several
glass or plastic trays. Place the trays at different heights
in a microwave oven (without using the turntable).
Then run the oven until about a quarter of the kernels
have popped. They will pop unevenly, with popped
spots and unpopped spots. The different spots will
form an interference pattern. The average distance
between popped spots is about the wavelength of the
microwaves.

Let’s try to bound the wavelength without measur-
ing it. Microwave wavelengths are significantly longer
than visible or infrared light (because if the wave-
lengths were shorter than visible, they could cause
burns, as ultraviolet light does). Thus the wavelength
will be much longer than 10−6 m. Microwave wave-
lengths will also be significantly smaller than the size
of the microwave oven (0.3 m). Taking the geometric
mean of these bounds, the microwave wavelength is
λ =

√
(0.3m × 10−6 m) = 5 × 10−4 m, or about half

a millimeter. However, these bounds are very far apart
and do not give us much confidence in the resulting
estimate.

Let’s go back to that interference pattern. When
there are two sets of waves with the same wavelength
in the same space, they create an interference pattern.
We can see this with water waves when we drop two
rocks into the same pond. When a wave bounces
off a surface and the incident and reflected waves
pass through the same space, they also interfere. This
interference creates regions of high intensity and low
intensity. The distance between these regions is typ-
ically the wavelength of the wave. If the microwave
wavelength is only 0.5 mm, then the distance between
“hot” and “cold” regions in the microwave caused by
the interference pattern would only be about 0.5 mm.
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This is so small that microwave oven turntables would
be unnecessary. In order for turntables to be useful,
the distance between hot and cold regions must be
at least a few centimeters. This lets us improve our
wavelength bounds. The upper limit from the size of
the microwave oven is still 30 cm, but the lower limit
is now 1 cm. So we can take the geometric mean with
more confidence to give an estimated wavelength of
5 cm.*

Now we need the distance from the satellite to
the Earth. The satellite is in geostationary orbit. This
means that it orbits the Earth once every day so that
it stays directly above the receiving antenna. We can
estimate this distance in a few different ways. We
might remember that it is about 25,000 miles up.
We might be able to use the equations of orbital
motion to solve for the orbit. We might remember
Kepler’s relationship that the orbital period squared is
proportional to the radius cubed (T 2 ∝ r 3).

However, we can also estimate it. There are two
orbits that should be somewhat familiar. A satellite
in low Earth orbit (LEO) has a period of about 90
minutes (1.5 hours or 1

16 day) and orbits about 6× 106
m from the center of Earth. The Moon has a period of
about 30 days and orbits about 4 × 108 m from the
center of the Earth. Because the geometric mean of
those two periods ( 1

16 day and 30 days, or 1.5 hours
and 700 hours) is close to one day, the geometric
mean of the distances should be close to that of a
geostationary orbit. Thus, we estimate that the orbital
radius is

rgeo ≈
√
(6 × 106 m)(4 × 108 m) = 5 × 107 m,

or 5 × 104 km.

*We could also use 6 cm, but 5 makes the arithmetic easier.
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Now we have all the ingredients for the answer.
Let’s assume that the transmitting antenna is as large
as our 10-km2 solar-power satellite, with a diameter of
3 km. The beam’s angular spread is θ = λ/d, and the
spatial spread of the beam is s = rθ , so we have:

s = rλ
d

= (5 × 107 m)(5 × 10−2 m)
3 × 103 m

= 8 × 102 m
= 1 km.

Thus, our receiving antenna would need to have an
area of about 1 km2, or about ten times smaller than
the transmitting antenna. The microwave power den-
sity at the antenna will be ten times larger than the
solar power density, or about 10 kW/m2.

This could be a problem. We might want to spread
the beam out more so that we don’t fry birds and
airplanes. Fortunately, it is much easier to spread the
beam out than to focus it in.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Oh say can you hear? 4.8
What is the maximum angular resolution of the
human ear? How well can we spatially locate
things by sound alone (horizontally, not vertically)?
What biological
or physical
characteristics
limit this
resolution?

HINT:Assumeareasonablepitch(nottoohighandnot
toolow).

HINT:Imaginebeingoutinanopenfieldwithoureyes
closed.Howcloselycouldwepointtoabarkingdog?
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ANSWER: As usual, we can estimate our aural angular
resolution in different ways, either frommeasurement
or from physics. Imagine standing in an open field
with our eyes closed. A dog barks. How closely can we
point to the dog just using sound? We can certainly
localize the sound much better left to right than front
to back, so let’s just consider sounds coming from in
front of us. Rather than trying to estimate angles in
degrees or radians, let’s rephrase the question slightly.

If there are a lot of dogs spread out evenly in a half-
circle in front of us, how many could we distinguish
among? We could certainly distinguish between two
dogs and certainly could not distinguish among one
hundred. We could probably distinguish among ten
and probably not distinguish among forty. This means
that we can distinguish about twenty items within
a 180◦ range, giving an angular resolution of 10◦,
or about 0.1 radians. This is 103 times worse than
our optical angular resolution. Note that this is the
horizontal resolution; we are much much worse at
localizing items vertically.

Now let’s consider the physical limitations. Our
eyes have lots and lots of spatial sensors (rod and
cone cells) but only three different frequency (color)
sensors (red, green, and blue cone cells). Our ears have
only two spatial sensors (two ears) but lots and lots of
different frequency (pitch) sensors.

In order to localize a sound, our two ears exploit
differences in the sound’s arrival time and loudness.
Consider the arrival time first. Sound travels in air at
300 m/s. Our ears are separated by about 8 inches, or
20 cm (0.2 m). If a sound originates directly in front
of us, it will arrive at both ears simultaneously; if it
originates off to one side, it will arrive at the farther ear

t = 0.2m
(300m/s)

= 6 × 10−4 s = 0.6ms
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after it arrives at the nearer ear.* Distinguishing
twenty angles ranging from the left (when the left
ear’s signal precedes the right ear’s by 0.6 ms) to the
right (when the right ear’s signal is earlier by 0.6 ms)
implies that the brain can resolve time differences of
0.06 ms, or 60 microseconds. Wow.

For higher frequency sound, the brain relies on
sensing the loudness difference at the two ears. This
will be a complicated function of head shape, ear
shape, and frequency. This is why it is much harder
to localize high pitched sounds.

* Note that what we are really sensing is not the difference in arrival
times, as that only applies to the start of the sound, but to the
phase difference. The phase difference is the difference in the
arrival time of a single wave. This only works when the
wavelength, λ, is larger than the ear separation. We can relate the
speed of sound, c ; the wavelength, λ; and the frequency, ν, by
remembering the bad joke: “What’s nu? c over lambda!” Thus,
this only works when ν ≤ (300m/s)/(0.2m) = 1,500 Hz. We
don’t need to worry about these details; this footnote is really here
to deflect snide comments from experts.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Heavy loads 4.9
What is the dynamic range of our sense of
touch? In other words, what is the ratio of
the maximum tolerable weight to the minimum
perceptible weight?

HINT:Whatisthelightestobjectwecandetect?

HINT:Whatistheheaviestweightwecanwithstand?
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ANSWER: Let’s start by estimating the maximum
weight we can withstand. A typical human mass of
100 kg corresponds to a weight of 103 newtons (N).
We can tolerate the weight of a 100 kg person sitting
on our lap. Ten 100-kg people on our lap would
be too much. Alternatively, the maximum allowed
acceleration on a roller coaster is 3.5g (as described
in an exhibit on speed seen recently in the Pacific
Science Center in Seattle).* Fighter pilots are subjected
to accelerations up to 10g . A brief acceleration of 100g
(as in a car crash) will rupture the aorta.† Let’s use
a maximum safe acceleration of 10g , which gives a
maximum force of

F = 10mg = 10 × (10N/kg) × (100 kg) = 104 N,

or 1 ton.
Now let’s estimate the minimum detectable force.

We can sometimes feel a mosquito land, but can rarely
feel it once it has landed (until it “bites”). We can
definitely feel the weight of a fly. Now we just need
to estimate the weight of insects. A squooshed (that’s a
technical term) mosquito would occupy a volume of
between 1 mm and 10 mm3. At a density of 1, that
gives a mass of between 1 mg and 10 mg. We’ll take
the geometric mean of 3 mg. A housefly is about one
hundred times larger than a mosquito and has a mass
of 100 mg. Because we can rarely detect the weight
of 1 mg and can always detect the weight of 100 mg,
we can take the geometric mean and estimate that
the minimum detectable force is the weight of 10 mg.

* The variable g refers to the acceleration of gravity, so 3.5g means
that the roller coaster exerts a force on our body that is 3.5 times
stronger than that of gravity or 3.5 times our own weight.

† Force tolerance is strongly dependent on direction. The greatest
tolerance is for “eyeballs in” forces. For incredibly more
information, see NASA STD-3000, Man-Systems Integration
Standards [22], especially section 5-3.
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Thus, the smallest force we can detect is about

Fmin = mg = 10−2 kg × 10N/kg = 0.1N.

This means that the dynamic range of our sense of
touch is 104 N/10−1 N = 105. This is not bad, but it
pales in comparison with the 1014 dynamic range of
our eyes.
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Chapter 5
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Now let’s look at human energy sources.

How much energy can a human produce?

Is it really worth it?

The words “energy” or “energetic” are used loosely to
describe many things, from performances to batteries
and from toddlers to automobiles. In science, energy
has a more restricted meaning, but it includes energy
of position (potential energy), energy of motion (ki-
netic energy), thermal energy, chemical energy, grav-
itational energy, etc. In a previous chapter, we looked
at energy and recycling. In this chapter, we will look at
energy and motion.

There are several forms of potential energy, includ-
ing gravitational and spring. Gravitational potential
energy near the surface of the Earth is equal to an
object’s mass (in kg) times its height (in meters) times
the gravitational constant g = 10 N/kg or

U = mgh.

The energy of motion, or kinetic energy, depends
on the mass of the object and its speed:

K = 1
2
mv2.

Similarly, the term “work” is used loosely to de-
scribe many activities. We will use its scientific defi-
nition: a form of energy transfer, specifically equal to
the force applied times the distance over which it is
applied,

W = F d.

If the force and distance are in the same direction (as
when we help push our friend’s broken-down car off
the road), then the work done is positive. If the force
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and distance are in opposite directions (as whenwe are
pulling back on our dog’s leash as he tries to catch that
darned squirrel), then the work done is negative. If the
force and distance are perpendicular to each other (as
when the Earth pulls on the Moon in its orbit or when
we swing a ball on a string around our head), then the
work done is zero.

Force is measured in newtons (1N = 0.2 lb = 1
apple); distance is measured in meters (1m = 3 ft);
and work and energy are measured in joules (1 J =
1N × 1m).

Similarly, “power” will mean the energy used per
second, or the work done per second, and will be
expressed in joules per second or watts (1 W = 1 J/s).

Energy can also be measured in kilowatt-hours.
Because 1 kW = 103 W and 1 hour = 3.6 × 103 s,
1 kWh = 4 × 106 J. 1 kilowatt-hour of electricity
typically costs around $0.10 in the United States.
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Power up the stairs 5.1
How much power
do we use as we run
up six flights
of stairs?

HINT:Byhowmuchdoesourpotentialenergychange
fromthebottomtothetop?

HINT:Whatisourmass?Rememberthat2poundsis
approximatelytheweightof1kilogram.

HINT:Howtallisasix-storybuilding?

HINT:Howmuchtimewouldittakeustorunupthe
stairs?
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ANSWER: In order to estimate the power used as we
run up six flights of stairs, we need to estimate how
much our potential energy will change and how much
time it will take. This means estimating our mass, the
height, and the time. The more mass, the more power.
The higher the building, the more power. The more
time, the less power.

My weight is about 180 pounds, which corre-
sponds, in round numbers,* to a mass of 100 kg. Feel
free to use your own weight. If you don’t like running
up stairs, use somebody else’s weight.

Six flights of stairs is six floors. At about 10 to 15
feet per floor, that is 72 feet, or 24m, which we will
round off to 20m.

It will take more than 10 s and less than 103 s (20
minutes) to run up six flights of stairs. Taking the
geometric mean, we get 102s, or 2 minutes. This seems
reasonable. Feel free to go faster or slower if you prefer.

That means that we are exerting a power

P = mgh
t

= (102 kg)(10N/kg)(20m)
102 s= 200W.

Is this a lot? We need to compare it to a standard.
A diet of 2,500 food calories per day corresponds to
a metabolic rate of 100W. Thus, 200W is a significant
extra exertion (no kidding!), but not impossible.

* I made that bad joke in the previous book. I like to think that I
learned something from the experience.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Power workout 5.2
How much energy would the United States generate
per year if we connected all of our stair-steppers,
rowing machines, treadmills, etc. to electrical
generators? How much money would one person
save by generating his or her own electricity
that way?

HINT:Wereyououtofbreathafterrunningupthesix
storiesinthepreviousquestion?Couldyouhavekept
goingatthatpace?

HINT:Howmanylightbulbsdidyoumanagetolighton
thatsciencemuseumexercycle?

HINT:Abrightincandescentbulbuses100watts.

HINT:2,500foodcaloriesperdayequals100watts.

HINT:Howmuchtimeeachweekdopeoplespend
workingout?
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ANSWER: To answer this we need to estimate the
power output per person, the time spent working out,
and the number of people working out. There are
a few ways to estimate the power output. We can
visit a science museum that has a stationary bicycle
connected to a generator and electric light bulbs. The
brightest possible bulb is almost always 100W. (And it
is almost impossible to keep that bulb lit for more than
a few seconds.) We can start with our basic metabolic
rate of 100 W (2,500 kcal per day) and assume that
vigorous exercise would double that. We might know
that 1 horsepower equals 760 W and assume that
humans provide much less power than horses. Or we
can use the answer from a previous problem. All of
these methods will give answers that are definitely
greater than 10 W, and less than 103 W, so we will use
100 W.

The average exerciser probably works out about 3
hours per week (more than 1 hour and fewer than 10
hours). The proportion of the population that works
out is about 10% (more than 1% and less than 100%),
or 3 × 107 Americans.

This means that the electrical energy that we could
generate per year would be

E = (100W) ×
(
3
hr
wk

)
×

(
50

wk
yr

)
× (3 × 107)

= 5 × 1011 W· hr/yr = 5 × 108 kWh/yr
= 2 × 1015 J/yr .

This looks like a large number. It is a large number.
It is equivalent to 100 kilotons of TNT. But let’s look
at it in a little more detail.

Let’s assume that we are one of the hard-working
people who works out 3 hours per week. In one week,
we will generate 300 W·hr of electricity or 0.3 kWh.
At $0.10 per kWh, we will save approximately two
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cents.* This will hardly pay for the generator needed
to convert our hard work into electrical energy.

Despite this harsh economic reality, there is now
a hotel that encourages its guests to generate energy
on its exercise bikes and even rewards them with a
free meal for producing 10 W·hrs of electrical energy.
Wow! That’s worth at least a tenth of penny! [23].

Thanks to Chuck Adler of St. Mary’s College in
Maryland for the question.

* OK. Three cents. But then we can’t make bad jokes about putting
our two cents in.
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Water over the dam 5.3
How much hydroelectric power could be generated
from Niagara Falls?

HINT:Byhowmuchdoesthepotentialenergyofthe
waterchangefromthetoptothebottom?

HINT:HowtallisNiagaraFalls?

HINT:Howmuchwaterflowsoverthefallseachsecond?

HINT:Thedensityofwateris103kg/m
3
.

HINT:HowwideanddeepistheNiagaraRiver?

HINT:Howfastdoesitflow?
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ANSWER: Hydroelectric plants generate electrical
power by converting gravitational potential energy
to electrical energy. Because gravitational potential
energy (PE = mgh) depends on mass and height, we
need to estimate the rate of water flow over Niagara
Falls and the height of the falls. As usual, we will
estimate lower and upper bounds for each quantity
and take the geometric mean for our estimate.

We will break the problem down to estimating the
water width, depth, flow rate, and falls’ height. Based
on memories of paintings and photos of the falls, the
river width at the top of the falls is more than 10m and
less than 10 km, so we will use the geometric mean
of 300 m. The river depth is more than 1 m and less
than 100 m, giving an estimate of 10 m. The flow rate
is more than 1 m/s (2 mph) and less than 10 m/s, so
we will use 3 m/s. The height of the falls is more than
10 m and less than 1 km, so we will estimate 100 m.
This means that the mass of water flowing over the
falls each second is

m/t = (300m)(10m)(3m/s)(103 kg/m3) = 107 kg/s,

or 104 tons per second. Wow. That is a lot of water
over the dam (or the falls, as the case may be).

The power that can be generated from this potential
energy is

P = m
t
gh

= (107 kg/s) × (10m/s2)(100m)
= 1010 W = 10GW.

This seems high. One large coal- or nuclear-
powered electrical plant generates “only” about 1 GW,
one-tenth of our estimate for Niagara Falls.

According to the New York Power Authority, 1.5×
106 gal/s (6 × 106 L/s or 6 × 103 m3/s) flows from
Lake Erie into the Niagara River. The height of the
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falls is 52 m. Our (OK, it’s really “my”) flow rate and
height estimates are each too high by a factor of two.
In addition, at least half of the water cannot be used
to generate power but must flow over the falls during
daylight in tourist season.

Looking at these figures in detail, we see that we
underestimated the width of the falls by a factor of
three but greatly overestimated the water depth at the
edge of the falls. Fortunately, these errors partially
offset each other.

However, we are not actually that far off. Our
estimate is only four times higher than the 2.4 GW that
the NYPA power plant generates. This is well within
our goal of a factor of ten.

That is the equivalent of more than two large coal-
or nuclear-powered electrical plants. That’s a lot of
power!

Thanks to Albert J. Read of the SUNY College at
Oneonta and the Science Discovery Center of Oneonta
for suggesting the question.
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A hard nut to crack 5.4
How much energy (work) does it take
to crack a nut?

HINT:Howmuchforcedowehavetoapply?

HINT:Howmuchdistancedoweapplyitover?
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ANSWER: Let’s consider an English walnut. Almonds
are too easy, and black walnuts are much too difficult.
Let’s also use a nutcracker (unless we want to show off
by cracking the nut with our bare hands).We will need
to estimate the force applied and the distance traveled.
The distance is easier. It will be a small fraction of an
inch, or about 0.5 cm (because 1 cm = 0.4 in).

The force applied equals our grip strength. When
we lift a heavy object, we close our hands first and then
lift with our armmuscles. However, try to imagine the
heaviest object we can lift with just our finger muscles.
It is more than 1 lb and less than 100 lbs, so we’ll take
the geometric mean and estimate 10 lbs, or 50 N.

Now we can calculate the work done:

W = F d = (50N)(0.5 × 10−2 m) = 0.3 J.

That is not much energy at all. It is difficult to crack a
nut because it takes a lot of force, not because it takes a
lot of energy. In fact, that is why we (or at least, I) use
a nutcracker. The nutcracker is a lever that allows us
to use less force by increasing the distance over which
we apply it.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Mousetrap cars 5.5
Could we power a car by using mousetraps for
energy storage (instead of gasoline or batteries)?
How much energy could we store in mousetraps?
How far could a mousetrap-powered car travel?

HINT:Howmuchworkdoesittaketo“load”a
mousetrap?

HINT:Whatisthesizeofamousetrap?

HINT:Howmanyloadedmousetrapscouldwefitintoa
car?
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ANSWER: In order to figure out the practicality of us-
ing mousetraps to power our cars, we need to estimate
how much mousetrap energy we can store in a car.
To do this, we need to estimate a typical mousetrap’s
volume (or mass) and stored energy.

A traditional mousetrap has a spring-loaded wire
bail that snaps shut when triggered. It is about 2 inches
by 4 inches in area. The wire bail is about 2 inches
long and thus requires 2 inches of vertical clearance.
Because 2 inches = 5 cm, this means that the volume is

V = 5 cm × 10 cm × 5 cm = 250 cm3.

Each trap will have amass that is only an ounce or two,
or a few tens of grams.

We’ll need a lot of traps to power our car, so let’s
calculate the number of traps we can fit in a cube
1 m (3 ft) on each side. The volume of that cube is
V = 1m3. The volume of one mousetrap is 250 cm3.
Because 1 m = 102 cm, (1 m)3 = (102 cm)3 = 106 cm3.
This means that we can fit

N = 106 cm3

250 cm3 = 4 × 103

mousetraps in a cubic meter. (Another way to look at
this is that we can fit twenty rows by ten columns of
mousetraps into a square meter, and then we can stack
them twenty high. This also gives us four thousand
mousetraps per cubic meter.)

We can estimate the stored energy by estimating
the force needed to set the trap. That force is more
than 1 lb and definitely less than 100 lb, so let’s use
10 lb (50 N). As this force is exerted over a distance of
10 cm, the work done* is

W = F d = (50N) × (0.1m) = 5 J.

* Physics pedants will complain that I should use an average of half
the force, but that is needlessly precise for this book.
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Thus, the energy stored per volume is

E /V = (5 J) × (4 × 103 mousetraps/m3),

= 2 × 104 J/m3,

and the energy stored per mass is

E /m = 5 J
30 g

= 200 J/kg.

Is this a lot or a little?
In order to have as much energy as possible, let’s

use a cubic meter of mousetraps or about ten times
the volume of a typical gas tank. Those 4× 103 mouse
traps will have a mass of only 100 kg (that’s the mass
of 100 liters or 25 gallons of gasoline) and can store
2 × 104 J.

Gasoline has an energy density of 3 × 107J/L, so
our mousetraps will give us the energy of about 1 mL
(10−3L or 1 cubic centimeter) of gasoline. However,
we do have one small advantage. The typical efficiency
for converting the chemical energy in gasoline to me-
chanical energy is only about one-third. As the energy
of mousetraps is already mechanical, one cubic meter
of mousetraps will have the same useful energy as a
whopping 3 mL (or half a teaspoon) of gasoline.

Now let’s see how far we can go on 3mL of gasoline.
Thirty miles per gallon is about 50 km/gal, or 12 km/L,
which, dividing both the numerator and the denom-
inator by 103, is 12 m/mL. Thus our mousetraps will
allow the car to travel approximately 40 m (120 ft)
before we need to reset all of the traps.

Note also that if it takes 1 second to reset each trap,
that is an energy transfer rate of P = 5 J/s = 5W. This
is a little less than the 10 MW we achieve at the gas
station. About a million times less.*

* See Guesstimation for a discussion of gasoline energy density and
energy transfer rates.
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Looking at it another way, at 1 second per trap we
can reset all the traps and “refuel” the car in a mere
4×103s, or about 1 hour. Thismeans that we will travel
about 40m, or 100 feet, per hour.

Oh well, back to the drawing board.
Thanks to Alex Godunov of OldDominionUniver-

sity in Virginia for the question.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Push hard 5.6
How much work does it take to push
a car off the road?

HINT:Howmuchforcedoesittaketogetthecarmoving?

HINT:Howmuchforcedoesittakeoncethecaris
moving?

HINT:Howfardowepushit?

HINT:Whyisn’tourfriendpushingharder?It’shiscar.
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ANSWER: We need to estimate the force applied and
the distance traveled. We have to apply a large force to
start the car moving. However, once it is moving, it is
easy to keep the car moving.*

In order to start the car moving, we need to push
as hard as we can. That is about 100 lbs of force (or
about 500 N). Fortunately, we only need to push that
hard for about 10 ft (or about 3 m). After that, we only
need to apply a fraction of that force, say about 100 N
(20 lbs). We can probably get the car to the side of the
road in about only 10 m (30 ft). This means that the
total work done is

W = F d = (500N)(3m) + (100N)(10m)

= 3 × 103 J.

Let’s see if this is reasonable.We estimated that it takes
about 2× 103 J to get the car rolling. At that point, it is
moving at walking speed or about 1–2 m/s (2–4 mph).
The energy of motion is K = ( 1

2
)
mv2. A small car

with a mass m = 103 kg (1 ton) and a speed v = 1
or 2 m/s has a kinetic energy between 500 and 2,000 J.
Close enough.

Note that this is less than the energy stored in all
those mousetraps.

* Maybe I could say that better. How about: “An object at rest tends
to stay at rest, and an object in motion tends to stay in motion”?
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Pumping car tires 5.7
How much work does it take
to pump up a car tire?

HINT:Forcetimesdistanceequalspressuretimes
volume.

HINT:Whatisthepressureofacartire?

HINT:105N/m2equals1atmosphereequals15pounds
persquareinch.

HINT:Whatisthevolumeofacartire?
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ANSWER: We defined work earlier as the product
of force and distance. We could estimate the work
needed to fill a car tire using a bicycle pump by
estimating the force applied to the pump, the distance
the pump handle travels, and the number of pump-
strokes needed to fill the car tire. However, we can
also do it more directly, using the pressure and volume
of the car tire itself. To do this we use the fact that
pressure equals force divided by area, and volume
equals distance times area. This means that force times
distance equals pressure times volume, or

W = F d = PV.

We’ll try both methods.
It will take a few pounds of force (more than 1 and

less than 30) to push the bicycle pump handle, so we
will estimate 6 pounds, or 30 N. The pump handle
travels about 1 foot, or 0.3 m. It will take more than
10 and less than 103 strokes to fill the tire, so we will
estimate 102. This means that the total work done is

Wpump = F d = (30N) × (0.3m) × 100 = 103 J.

Now let’s try to estimate the pressure and volume.
A full car tire is at a pressure of about 30 psi (pounds
per square inch). This is 2 atmospheres, or P = 2×105
N/m2.*

To estimate the volume of a tire, we need its rim
radius, thickness (sidewall height) and width. A typical
compact car tire is about 8 inches (20 cm) wide with
a 4-inch (10 cm) sidewall thickness, and an 8-inch

* There are far too many units used for pressure. One atmosphere,
which is the average pressure exerted at ground level by the
weight of all the air above us, equals about 15 psi, or 105 N/m2.
Less useful (but also common) units include torr (mm of
mercury), inches of mercury, and inches of water, where 1 atm =
760 torr = 30 inches of mercury = 400 inches of water. Barometric
pressure is commonly measured (at least in the United States) in
inches of mercury.
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(20 cm) radius rim. If we want more precision, we can
measure these directly or just read them off the tire la-
bel.* A tire has a complicated shape. Let’s approximate
its volume by “unrolling the tire” so that it will be the
product of its circumference, sidewall thickness, and
width:

V = (2πr )tw = 6(20 cm)(10 cm)(20 cm)

= 2 × 104 cm3 = 20 L.
This is about 5 gallons, which seems reasonable.†

To calculate the work done inflating a 20-L volume,
we first need to convert 20 L to 0.02 m3 (because
1m3 = 103 L). The work done inflating a 0.02m3

volume to a pressure of 2 × 105 N/m2 is just
Wtire = PV = (2 × 105 N/m2) × (0.02m3)

= 4 × 103 J.
This is four times the previous estimate. If we want to
reduce the error, then we need to include the fact that
the pressure increases from zero as we start inflating
the tire to 30 psi when the tire is fully inflated. This
means that the average pressure during inflation is
only 15 psi, and we should divide our final answer by
two, so that Wtire = 2 × 103 J.‡

As usual, we need to ask if this is a lot or a little.
Inflating a car tire using a bicycle pump is certainly a
significant exertion. However, 2 kJ is the energy used
by a 100-W light bulb in 20 seconds and is less than
10−3 of a kilowatt-hour. Perhaps we can harness our
cubic meter of mousetraps to do the work for us.

* A “P225/50R16 91S” tire has a 225-mm width, a sidewall that is
50% of the width, and a 16-inch diameter rim.

† If we want to calculate the volume more precisely, then we should
use V = (π(r + t)2 − πr 2)w. However, the approximation used
above is good when the sidewall thickness, t, is significantly less
than the rim radius, r .

‡ This is the factor of one-half that we casually dismissed in the
mousetrap question.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Pumping bike tires 5.8
How much work does it take
to pump up a bicycle tire?

HINT:Forcetimesdistanceequalspressuretimes
volume.

HINT:Whatisthepressureofabicycletire?

HINT:105N/m2equals1atmosphereequals15pounds
persquareinch.

HINT:Whatisthevolumeofabicycletire?
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ANSWER: This question is identical to the previous
one, except that the volume is smaller and the pressure
is larger. There is also a personal difference, in that I
have manually inflated many more bicycle tires than
car tires.

Let’s apply the two estimation techniques again.
In order to estimate the work done inflating the
skinny, high-pressure tires on my road bike using a
bicycle pump, we need to estimate the force applied
per stroke, the distance per stroke, and the number
of strokes. Because the tire pressure is higher, the
force applied will also be higher. The maximum force
needed is easy to apply with a floor pump and difficult
to apply with a hand pump, so we’ll estimate that it is
40 pounds, or 200 N. The stroke length is still about 1
foot, or 30 cm. However, now it only takes about ten
or twenty strokes to inflate the tire. This means that
the work done is

Wpump = NFd = 20 × (200N) × (0.3m) = 103 J,

or a bit less than that required for the car tire.
Now let’s estimate the pressure and the volume.

A 100-psi bike tire is at a pressure of 7 atmospheres,
or P = 7 × 105N/m2. A typical road bike has a 26-
inch diameter wheel with a 1.25-inch tire. Converting
to sensible units (at least, units that are sensible for
estimating) this is a 30-cm radius wheel with a 3-cm
tire. That gives us a tire volume of

V = (2πr )tw = 6(30 cm)(3 cm)(3 cm)

= 2 × 103 cm3 = 2 L = 2 × 10−3 m3.

The work done inflating a 2 × 10−3 m3 tire to P =
7 × 105 N/m2 is

Wtire = 1
2
PV = 0.5(7 × 105 N/m2)

×(2 × 10−3 m3) = 7 × 102 J,
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or about three times less than that required for a car
tire. The volume is ten times less, but the pressure is
three times larger. These two estimates agree much
better because I have a lot more experience with bi-
cycle tire inflation than I do with car tire inflation.
However, even in the previous question, the estimates
agreed within a factor of two.

This is the energy used by a 100-W light bulb for
only 7 seconds.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Atomic bombs and confetti 5.9
Enrico Fermi estimated
the energy released by
the Trinity atomic
bomb test by
dropping
scraps of
paper and
measuring their
displacement
by the shock
wave as it passed
through them. If Fermi had
been 10 miles (16 km)
from ground zero and the
paper scraps moved 2.5 m out
(and then 2.5 m back), what
was the yield of the
Trinity test?

HINT:Theworkdonebytheshockwaveisthepressure
timesthechangeinvolume.

HINT:Estimatetheoverpressureoftheshockwave.

HINT:Thechangeinvolumeistheresultofthechangein
radiusofthespherefrom16kmto16kmplus2.5m.

HINT:1kilotonofTNT=4×1012J.
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ANSWER: We will estimate the energy released by an
atomic bomb by using the exact same technique we
just used to estimate the energy stored in a tire.* As
the hemispherical shock wave from the atomic bomb
passes, the air is displaced by a certain distance and
then returns to its original location. If there were lots
of pieces of confetti spread through the atmosphere,
we would see a hemisphere of confetti (i.e., all of the
confetti located a certain distance from the explosion)
expand and then contract. As the shock wave expands,
its energy will be spread over a larger hemisphere, and
thus its amplitude will decrease.

The energy of the shock wave will equal the change
in volume of the hemisphere as it expands (or con-
tracts) times the pressure of the shock wave. We
have the data for the hemisphere; we only need to
estimate the pressure. The frontal surface area of a
person is about 1 m2. If the shock wave pressure
was 1 atmosphere (105N/m2), then the force ex-
erted on a person would have been 105 N or the
weight of 104 kg (10 tons). Even 1 ton of force
would have had unfortunate consequences for the
observers. Therefore, the pressure was almost certainly
less than 104 N/m2 and more than 102 N/m2 (as that
would have had very small effects). We’ll estimate
P = 103 N/m2.

The change in volume of the hemispherical shell is
the area of the hemisphere times the displacement of
the paper (its thickness):

�V = (2πr 2)d = 6(1.6 × 104 m)2 × (2.5m)

= 4 × 109 m3.

* OK. It is not exactly the same. We will not try to estimate the
bomb yield by comparing it to the work done by a bicycle pump.
However, we will estimate the bomb yield by using the pressure
and volume.
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Thus the energy of the shock wave as it passed Fermi
was

E = P�V = (103 N/m2) × (4 × 109 m3)

= 4 × 1012 J = 1 kiloton,

using the conversion factor that 1 kT = 4 × 1012 J.*
Now we just need to estimate the fraction of the

bomb’s energy that went into the shock wave. The en-
ergy of the bomb was emitted in different forms. Some
went into light (photons), some into nuclear radiation
(neutrons), and some into the shock wave. In addition,
the shock wave would transfer energy to the ground
(by breaking things and heating things). Because there
are three or four forms of emitted energy, we should
multiply our estimate of 1 kT by a factor of three or
four. This gives an overall estimate of 4 kT.

Based on this data, Fermi estimated that the bomb
yield was 10 kT [24], which was about half of the actual
yield. We did well to get within a factor of ten.

*We could have estimated that conversion factor using the energy
density of gasoline, 4× 107 J/kg, and the fact that TNT has about
one-tenth the energy density of gasoline.
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Energy and Transportation

Chapter 6
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We use a lot of energy to move things around. We try
to do this as efficiently as possible, and we worry
about the relative merits of bicycles, high-speed trains,
hybrid cars, electric cars, biodiesel, airplanes, solar
panels, etc. Some people also worry about consuming
local foods to reduce transport costs. In this chapter we
will look at many of these options and try to determine
the relative costs of each. Of course, we will only be
able to put them into “Goldilocks” categories, but that
will be good enough for most purposes.

We will look at the energy needed to move things.
This will be dominated by various types of friction,
especially by air resistance (or drag) and the rolling
resistance of the wheels or tires on the rails or roads.
There are two pieces to air resistance, the drag caused
by the front of the object moving the air aside and the
drag caused by friction between the sides of the object
and the air it moves through (skin friction). The force
exerted by the air on an object such as a truck moving
through it is

Fdrag = 1
2
CρAv2,

where ρ = 1 kg/m3 is the density of air, A is the area
of the moving object, and v is the speed of the object.
So far, it all makes sense. As the truck gets bigger
(A increases), it has to move more air aside; as the
truck moves faster (v increases), it has to move more
air aside (the first power of v), and it has to move the
air aside faster (the second power of v); if the air gets
heavier (ρ increases), it is harder to move aside. C is a
constant that includes all the really hard-to-calculate
stuff, including how aerodynamic that truck or car
really is. C for cars (which are fairly aerodynamic)
ranges from about 0.25 to 0.5. C for a flat plate is 1.

Differences between 0.5 and 1 are not that impor-
tant in this book (but they would make the difference
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between a car that gets 40 mpg and a car that gets
20 mpg). However, C for skin friction (the air resis-
tance on the sides of the truck) is much lower, typically
about 3 × 10−3. This means that we can generally
ignore skin friction except for objects that are much
longer than they are wide (such as trains).

In order to keep a vehicle moving at constant speed,
the engine must supply a force that exactly opposes
the force of friction. The energy supplied by the engine
is then the force times the distance moved. When the
force is in newtons and the distance is in meters, then
the energy needed will be in joules:

E = F d.

The other major piece of information is the energy
contained in gasoline. One liter of gasoline contains
3 × 107 J of chemical energy.

We also canmeasure energy in calories. One calorie
(1 cal) equals 4 joules. However, we measure food
intake in kilocalories, so 1 food calorie (1 Cal) equals
103 cal equals 4 × 103 joules.

Note, however, that thanks to the second law of
thermodynamics,* the efficiency of an engine to con-
vert the chemical energy of gasoline to mechanical
energy is only about 25%. This is also true for the
efficiency of our bodies to convert the chemical energy
of food to mechanical energy.

Now that we have the information we need, let’s get
going.

* The three laws of thermodynamics are (1) you can’t win, (2) you
can’t break even, and (3) you have to play.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Gas-powered humans 6.1
Cars get between 10 and 60 miles

per gallon. How many miles
per gallon would a human

achieve walking or
running (if we could
metabolize
gasoline)?

HINT:Weeachconsumeabout2,500foodcalories,or107

joules,perday.

HINT:Mostofthatenergyisdevotedtomaintainingour
metabolisms.
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ANSWER: In order to estimate our miles per gallon,
we need to estimate the distance we travel and the
energy needed to do so. Humans, when in reasonable
shape, can walk or run long distances. We can travel
more than 10 miles per day and fewer than 100, so
let’s take the geometric mean and estimate 30 miles.
That is about the length of amarathon, so it is certainly
possible for many people (although it would take me a
lot more than a few hours).

In order to estimate the energy needed, we could
try to analyze the energy demands of running and
walking, or we could just consider the extra food
needed relative to our basic metabolism. The second
is easier, so we’ll do that first.

In order to walk 30 miles per day, we would proba-
bly need to double our normal food intake of 107 J/day.
Gasoline contains 3 × 107 J/L or about 108 J/gal. This
means that we could achieve about

e = 30miles
107 J

× (108 J/gal) = 300miles/gallon.

Wow. That is a lot of miles per gallon.
Alternatively, we could estimate that walking burns

a couple of hundred calories per hour, so that 10 hours
of walking (30miles at 3mph) would burn about 2,000
more calories. Remember that those are food calories,
so 2×103Cal = 107 J. This agrees quite nicely with the
previous estimate.

Now let’s try to directly estimate the energy needs
of walking. If we walk quite briskly at 4mph (2m/s) we
can complete our 30 miles (50 km) in about 8 hours.
This means that our kinetic energy will be

K = 1
2
mv2 = 0.5 × (100 kg) × (2m/s)2 = 200 J.
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However, that is just the energy needed to start mov-
ing. It says nothing about the energy needed to keep
moving.

At about 1m per step, it will take about 5×104 steps
to cover 50 km (30 mi). Walking is not 100% efficient;
we will lose some of our kinetic energy at each step.
We will lose more than 1% of our kinetic energy but
less than 25%, so we will estimate 5%. This means that
we will need to supply E = 200 J × 0.05 = 10 J at
each step to maintain our speed. We will also need
to include a 25% efficiency factor for converting food
(chemical) energy into walking (kinetic) energy. Thus,
the total energy needed would be

E = 4nstepE step = 4(5 × 104 steps)(10 J/step)

= 2 × 106 J.

This is a factor of five less than the previous estimates.
We can estimate this in yet another way. A small

car weighs about 103 kg and gets about 30 mpg. Our
mass is ten times less than that car, and our metabolic
efficiency (excluding basal metabolism) is probably
about the same as the car’s (about 25%). Walking is
less efficient than rolling, but air resistance is much
less at walking speeds than driving speeds. Thus we
should get about ten times the mileage, or about
300 miles per gallon.

Three of our four estimates are reasonably close
to each other. This implies that we overestimated the
efficiency of walking.

Thus, if humans could metabolize gasoline, we
could achieve about 300miles per gallon. According to
David Swain, University Professor of Exercise Science
at Old Dominion University, various studies have
measured the energy cost of walking and determined
it to be 50 kcal/mile (2×105 J/mile) for a 62 kg (140 lb)
person. That works out to 600 mpg.
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Note that fat and gasoline contain almost the same
amount of chemical energy. While it is quite impres-
sive that we can walk hundreds of miles on a single
gallon of gasoline, it also means that we need to walk
dozens of miles to burn off a single pound of fat.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Driving across country 6.2
How much energy does it take to transport 1 ton
of cargo across the United States by automobile?

HINT:Theenergyefficiencyisabout25%.

HINT:Mostoftheenergyisspentovercomingair
resistance.

HINT:TheforceofairresistanceisFair=(1/2)CAρv2.
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ANSWER: If there were no friction or air resistance,
a car that started in New York City at 65 mph (30
m/s) would continue at that speed in a straight line
forever.* Its mileage would be infinite, as it would
have traveled thousands of miles with zero gallons of
gasoline. However, cars experience both friction and
air resistance. In order to estimate the energy used
traveling across the country, we need to estimate these
forces. Note that the force that the car’s engine needs
to exert is just equal to and opposite of the total force
that slows it down.

The frictional force equals the force needed to push
a stalled car.† Although it takes a lot of force to get
a car started moving, once the car is moving, we can
keep it moving with a force of only 10 or 20 pounds
(50 to 100 N). This is about 1% of the weight of the
car, implying that the coefficient of rolling resistance
(tire friction) is about 1%.

Unlike friction, air resistance increases rapidly with
speed. Using

Fair = 1
2
C Aρv2,

we need to estimate C , A, and v. At 65 mph, v =
30m/s (because 1 m/s ≈ 2 mph). A car is about 6 ft
(2 m) wide and 5 ft (1.5 m) tall, giving a frontal area
of A = 3m2. Most cars are well streamlined so that
C ≈ 0.25. This gives

Fair = 1
2
(0.25)(3m2)(1 kg/m3)(30m/s)2 ≈ 400N,

which is much more than the rolling resistance.
The distance from New York to Los Angeles is

about 3,000 miles (5,000 km). Including a factor of

* Or until it hit something.
† If you have never needed to push a car, you are lucky (or just
drive better cars).
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four for engine efficiency, the energy needed to move
a car from NY to LA (ignoring stoplights and moun-
tains) is

E = 4Faird = 4(400N)(5 × 106 m) = 8 × 109 J.

This is the energy contained in about 300 L (80 gal-
lons) of gasoline, resulting in about 40 mpg.

Thus, the energy used to drive at highway speed
from NY to LA is largely due to air resistance.

However, this estimate just accounts for the energy
needed to drive a car across country. It does not
account for the cargo capacity. A typical medium-size
car can carry about half a ton (the weight of about six
people), so we would need two cars to carry an entire
ton.

This means that we would need 600 liters (150
gallons) of gasoline to transport 1 ton across country
using medium-size cars. If you used a Smart Car or a
Hummer, your numbers would be a bit different.
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Keep on trucking 6.3
How much energy does it take to transport 1 ton
of cargo across the United States by truck?

HINT:Thisisverysimilartothepreviousquestion.
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ANSWER: This question should be easier, as we can
use most of the answer to the previous question. We
just need to estimate the frontal area of a semitrailer
truck, its aerodynamic coefficient, its rolling resis-
tance, and its carrying capacity.

Trucks are wider and taller than cars. A truck is
about 8 feet (2.5 m) wide and less than 14 feet (4m)
tall, so it has a frontal area of about 10 m2. It is
definitely less aerodynamic than a car (C = 0.25) and
more aerodynamic than a flat plate (C = 1), so let’s
estimate C = 0.5. This gives a force of air resistance of

Fair = 1
2
(0.5)(10m2)(1 kg/m3)(30m/s)2

≈ 2 × 103 N,

or about five times more than an automobile.
The rolling resistance (tire friction) will depend on

the weight of the truck but not its speed. Assuming
a 40-ton semitrailer truck and using the coefficient of
rolling resistance of 1% that we estimated for a car, we
get a force owed to the tires of 1% of the truck’s weight:

Ftire = (10−2)(40 tons) = (10−2)(4 × 105 N)

= 4 × 103 N,

or about twice the force of air resistance.
Adding these forces and applying them over a

distance of 5 × 106 m from NY to LA, requires an
energy input of (including a factor of four for engine
efficiency):

E = 4(Fair + Ftire)d = 4(6 × 103 N)(5 × 106 m)

= 1011 J.

This is the energy contained in about 4 × 103 L
(103 gallons) of gasoline or diesel fuel, which gives
about 3 mpg.
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Comparing our estimates to reality, we find that
trucks get about 6 to 8 miles per gallon and that air
resistance accounts for two-thirds of the energy used
by a semitrailer traveling at 65 mph [25]. These both
differ by a factor of two from our estimates, implying
that we overestimated tire friction.

Now let’s calculate the mileage-per-ton. The semi-
trailer burns about 4×103 liters of fuel in transporting
40 tons across country. This means that transporting
1 ton by truck across country requires about 100 L
(25 gallons) of diesel fuel. That is about six times more
efficient than a car.
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Keep on biking 6.4
How much energy does it take to transport 1 ton
of cargo across the United States by bicycle?

HINT:Thisisverysimilartotheprevioustwoproblems.

HINT:Mostoftheenergyisspentovercomingair
resistance.

HINT:TheforceofairresistanceisFair=(1/2)CAρv2.

HINT:Howmuchweightcanabicyclistcarryortow?
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ANSWER: Bicycles are often presented as green alter-
natives to automobiles for commuting relatively short
distances. Here, in an effort to be utterly unreasonable,
we will estimate their efficiency for hauling cargo long
distances. Because we’re not totally masochistic, we’ll
choose a road bike with narrow, high-pressure tires
in order to minimize rolling resistance. That means
that most of the energy will be spent fighting air
resistance, and we can apply exactly the same tech-
niques to bicycles that we just applied to cars and
trucks.

The force of air resistance will be

Fair = (1/2)C Aρv2,

and the energy used to bicycle across country, includ-
ing a factor of four for human metabolic efficiency,
will then be

E = 4Faird = 4(1/2)C Aρv2d,

where C is the drag coefficient (i.e., how nonstream-
lined it is), A is the frontal surface area, ρ ≈ 1 kg/m3

is the density of air, v is the bicycle’s speed, and d =
5 × 106 m is the distance from New York to Los
Angeles.

Let’s consider two extremes. If we ride a standard
road bike, then we will have a relatively upright pos-
ture, so our frontal surface area will be about

A = 2 ft × 5 ft = 10 ft2 ≈ 1m2

Standard road bikes are not streamlined, so our drag
coefficient will be close to 1. On the other hand, we
could ride a spiffy recumbent with a windshield that
will reduce our frontal surface area to A = 0.5 m2 and
our drag coefficient to C = 0.2, reducing the force of
air resistance by a factor of ten.

Our speed will be somewhere between 10 and
20mph (5 and 10 m/s). After riding a few hundred
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miles, we’ll probably be in excellent shape, so let’s use
10 m/s.*

We will need energy of

E = 4Faird = 4(1/2)CρAv2d

= 4(0.5)(1)(1 kg/m3)(1m2)(10m/s)2(5× 106 m)

= 4(50N)(5 × 106 m)

= 109 J

to pedal our road bike (and a lot less to pedal our spiffy
recumbent).

Now we need to consider how much weight we can
tow behind our bicycle. We can certainly tow more
than 10 kg (20 pounds) and less than 1,000 kg (1 ton)
so let’s take the geometric mean and estimate 100 kg.†
At 100 kg per bicycle, we will need ten bicycles to
transport each ton, so we will need

E = 1010 J

to transport each ton across country. This is equal to
2× 106 food calories (1 Cal = 4× 103 J), or the energy
equivalent of 300 liters of gasoline. (These numbers
will be significantly less for our recumbent.)

That is a lot of food. Let’s try to estimate this
another way. One hundredmiles in a day is a very long
bicycle ride, especially towing 100 kg. If we bicycle
* There are trade-offs here. As we go faster, we need more energy
but less time (a significant consideration when bicycling
cross-country). In addition, as we go slower, air resistance
becomes relatively less important, and tire friction becomes more
important.

† This assumes that the towed weight will not significantly increase
our air resistance and therefore will not significantly increase the
energy expended. This will only be true if we are not towing too
much weight and if the trailer is well designed. Of course, the
trailer will make it much more difficult to climb hills. On the
other hand, it will make going downhill much more exciting.
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that far, we will probably about double our normal
food intake from 2,500 to 5,000 calories per day. At
100 miles per day, it will take 30 days to bicycle across
country. In that time we will consume an extra 8×104
calories. Ten of us will consume about an extra 106
calories. This is within a factor of two of our previous
estimate.

Thus, bicycles are more energy efficient than cars
but less energy efficient than trucks for long-distance
cargo hauling.

However, labor costs change the balance com-
pletely. It takes two cars about one week each to
transport 1 ton across country, whereas it will take ten
bicycles about four weeks each. At $1,000 per person
per week, that is $2,000 per ton for cars, $40,000 per
ton for bikes, and only $25 per ton for a 40-ton truck.
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Keep on training 6.5
How much energy does it take to transport 1 ton
of cargo across the United States by train?

HINT:Thisisverysimilartothepreviousquestion.

HINT:Considertheairresistanceofthesidesofthetrain.
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ANSWER: This question is a little different from the
two previous ones. Trains are very long compared
with cars and trucks, so we will need to estimate
the air drag caused by skin friction, that is, the air
resistance caused by the sides and tops of the rail-
road cars. This will probably be more important than
the frontal air resistance, especially for a very long
train. In addition, steel wheels rolling on steel track
have very little rolling resistance, so we will neglect
that.

The frontal area of a freight train is about twice as
large as that of a truck, or about 20 m2.

Now let’s consider the air resistance caused by the
sides and tops of the cars. This is a very complicated
problem in computational fluid dynamics. In order to
solve it, first we will set up the necessary differential
equations, remembering that air is a compressible
fluid, and then . . .

Sorry about that. Let’s try again. The air resistance
resulting from air flow along the sides and top of a
given boxcar will be between 1% and 100% of the
frontal air resistance of the train. Taking the geometric
mean, we estimate that the side and top air drag of a
single railroad car is 10% of the frontal air drag of the
locomotive.

This means that each car will contribute the equiv-
alent of 2 m2 frontal area, or about one-fifth that of a
semitrailer truck. The total air drag of a one hundred–
car freight train will be

Fair = 1
2
CρAv2

= 1
2
(0.5)(1 kg/m3)(100 × 2m2)(30m/s)2

≈ 5 × 104 N,
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where we have neglected the 20 m2 frontal area of the
locomotive because it is much smaller than the 200 m2

total effective area of the cars.
Thus, the total energy required to move a one

hundred–car freight train a distance of 5 × 106 m,
including the factor of four for engine efficiency, is

E = 4Faird = 4(5 × 104 N)(5 × 106 m) = 1012 J.

This is the energy contained in 3× 104 L (104 gallons)
of gasoline.

Wow. That’s enough to fill a small swimming pool.
However, that is the wrong comparison. Note that
3 × 104 L has a mass of 3 × 104 kg, or 30 tons. That is
about one-third the capacity of a single railroad tank
car.

Anyway, we’re supposed to be calculating the fuel
needed to transport 1 ton across country. Each rail-
road car has a much greater capacity than a semi-
trailer. Many railroad cars are designed to carry two
40-foot containers, or the equivalent of two semi-
trailer loads. A one hundred–car freight train carrying
80 tons per car can transport 8 × 103 tons.

Thus, it takes about 4 L (1 gallon) to transport 1 ton
across country by railroad. This is much more fuel
efficient than other forms of transportation.

And now for the dreaded reality check. According
to the American Association of Railroads, it takes
about 7 gallons of fuel to transport 1 ton across coun-
try.We are within a factor of ten, but perhaps we could
have done better. We neglected rolling resistance and
other forms of friction. Our estimate of the air resis-
tance was also very crude and could well have been off
by a factor of several.
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Keep on flying 6.6
How much energy does it take to transport 1 ton
of cargo across the United States by airplane?

HINT:Whatistheglideratioofanairplane?Howmany
feet(ormeters)doesaglidingairplanedescendforeach
foot(ormeter)thatittravels?
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ANSWER: In order to figure out how much energy
an airplane uses to fly across country, we could try to
figure out the air resistance (drag) that the airplane en-
counters. Unfortunately, airplanes are far more com-
plicated aerodynamically than railroad cars, trains, or
trucks. Fortunately, there is an easier way to estimate
this. When an airplane glides, it must either slow
down or descend. When it glides at constant speed,
it uses the energy gained by descending to offset the
energy lost by air resistance. The amount it descends
is typically referred to as the “glide ratio,” expressed
as the number of meters (or furlongs) the airplane
travels horizontally as it descends 1 meter (or furlong)
vertically.

Thus, if an airplane has a glide ratio of 10:1, for
every 10 furlongs that it travels horizontally the en-
gines must supply enough energy to lift the airplane
1 furlong.* This means that rather than estimating the
aerodynamic characteristics of our cargo airplane and
the speed at which it flies, we only need to estimate its
glide ratio. This is much easier.

The glide ratio must be more than 1 (well-designed
bricks) and less than 100 (well-designed gliders). As
usual, we will take the geometric mean and estimate
that the glide ratio of our cargo plane is about 10.

Thus, air resistance will cause our 1 ton of cargo
flying 5 × 106 m across country to descend a total
height of

h = 5 × 106 m/10 = 5 × 105 m.

Needless to say, without power from the engines, it
won’t make it all the way across country. It will take

* You may substitute your favorite unit for furlongs in the above
example if you insist.
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an energy input of

E = mgh = (103 kg)(10m/s2)(5 × 105 m)

= 5 × 109 J

to keep each ton of the plane at the same altitude.
However, we need to include twomore factors. The

first is the familiar engine efficiency of about 25%, and
the second is the mass of aircraft needed per ton of
cargo. Let’s estimate the airplane weight as a multiple
of its cargo capacity. A 1-ton automobile can carry
about 0.5 ton, so its multiple would be three (gross
weight is three times cargo weight). An airplane will
have a higher multiple because air is intrinsically less
suitable for load bearing than concrete (e.g., wings are
bigger and heavier than wheels) and a lower multiple
because it will be built of lighter materials. These will
offset each other, so we will use three for our multiple.
Applying a factor of four for engine efficiency and a
factor of three for aircraft mass gives

E = 3 × 4 × (5 × 109 J) = 5 × 1010 J.

At 3×107 J/L of gasoline, we will need about 2×103
liters, or 500 gallons, of gasoline to fly a ton of cargo
across country. That is about 2 tons of fuel per ton of
cargo. Unsurprisingly, this is a lot more than is needed
by train, truck, or even car.

Now let’s compare to reality. The actual glide (lift
to drag) ratio of a 747 is about 17. It burns about 11
tons of fuel per hour at cruising speed. The empty
weight is about 200 tons, and the maximum takeoff
weight is about 400 tons. This means that for a 6-hour
transcontinental flight, it will burn about 70 tons of
fuel to carry at most 130 tons of cargo or about 0.5 tons
of fuel per ton of cargo. Thus our estimate is off by less
than a factor of four. Most of that error is due to our
underestimate of the glide ratio.
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To summarize, we estimate that the fuel needed to
transport 1 ton across country by various modes is as
follows:

Mode Estimated fuel (L) Actual fuel (L)

Car 600 600
Bicycle 300 —
Truck 100 50
Train 4 30
Plane 2,000 500
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To pee or not to pee 6.7
All Nippon Airways started
asking passengers in 2009
to urinate before boarding
the airplane. How much fuel
would airlines save per
passenger or per flight if
passengers did this?

HINT:Howmuchmassdoweurinate?

HINT:Howmuchfuelisneededforeachkilogramof
massontheflight?
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ANSWER: To answer this question, we need to es-
timate the amount of mass excreted and the effect
this would have on fuel consumption. We already
estimated the volume of a typical urination to be 0.4 L
when considering the amount of pee in a pool.

However, the amount of urine that an airline pas-
senger has at the moment of boarding will vary ran-
domly between 0 and 0.4 L. Thus, we should use 0.2 L
(with a mass of 0.2 kg) for the average amount of pee.
If all passengers peed before boarding (and good luck
with that!), this would reduce the total takeoff mass by
80 kg on a four hundred–passenger jet. This is about
the mass of one passenger.

Now we need to estimate the fuel saved. Let’s con-
sider a large jet flying 5 × 103 km (3,000 miles). We
can use the total fuel needed per kilogram from the
previous problem, or we can try a new way to estimate
it, using the costs of the flight.

The absolute lowest fare that an airline charges
should be a bit more than the extra cost of flying the
extra passenger. The lowest round trip fare from NY
to LA is about $250. If fuel represents half the extra
cost of flying, then the additional fuel cost to fly one
passenger one way is $60. At $3 per gallon, this is
20 gallons or 80 L or about 1 kg of fuel per kg of cargo.

In the previous problem we estimated that it took
an average of 2 tons of fuel per ton of cargo. However,
this included the fuel needed to fly the empty airplane.
If we just include the extra fuel needed for each extra
ton of cargo, then we would have estimated one-third
of that, or about 0.6 tons of extra fuel per extra ton of
cargo. This is consistent with our cost-based estimate
of 1 kg of fuel per kg of cargo.*

Because the total weight of pee that could be
excreted from a 747’s passengers prior to flight is
* Or, if you prefer obscure English units, one stone of fuel per stone
of cargo.
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equivalent to the weight of one passenger, the airline
could save a maximum of 80 L of fuel on a cross-
continent flight.

Looking at this another way, it takes about a liter of
extra fuel to fly 1 kg of passenger across the country.
Therefore, by excreting 0.2 L of urine, each passenger
will save less than 0.2 L of jet fuel. At $3/gallon, this is
$0.15 each. It hardly seems worthwhile.

Now is this a cross-continent or a cross-incontinent
flight?
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Solar-powered cars 6.8
The Toyota Prius comes with the option of a
“Solar-Powered Ventilation System.” What
fraction of a car’s energy usage could a solar
panel provide?

HINT:ThesolarpowerdensityoutsidetheEarth’s
atmosphereis103W/m2.

HINT:Aliterofgasolinecontains3×107J.
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ANSWER: We should estimate both the energy that
a car consumes and the energy that a solar panel can
provide. A typical car burns about 500 gallons per year
of gasoline (104 miles at 20 mpg), or about 1.5 gallons
(6 liters) per day. At 3 × 107 J/L, a typical car uses
2 × 108 J of chemical energy daily.

Now we need to include the conversion efficiency
from chemical to thermal to mechanical energy of
about 25%. The 2 × 108 J of thermal energy used
by the car each day only produces about 5 × 107 J
of mechanical energy (although all that waste heat is
very useful in the winter for heating the passenger
compartment).

The maximum energy that a solar panel can pro-
vide is limited by the available area and by the solar
flux. The available roof area is only about 1 m2. Even if
we cover every square centimeter of surface with solar
panel in order to achieve 4 m2, it will not make much
difference.

The solar flux at Earth’s orbit is about 103 W/m2.
However, only about half of that reaches the ground.
We’ll need to divide by another factor of two for
nighttime and another factor of two for the fact that
the light hits the solar panel at an angle. The efficiency
of a typical solar panel is more than 1% and less than
100%, so we’ll take the geometric mean and estimate
10%. This means that the 103 W/m2 gives us electrical
power of

P = (103 W/m2) × (0.1)
2 × 2 × 2

× (1m2) = 10W.

Given that there are about 105 s in a day, the solar
panel can produce 106 J = 1 MJ of electrical energy
daily.

This energy is only about 2% of a car’s energy use.
Even if we covered the entire car with solar panels, it
would only increase this to 8%. We can save at least
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as much energy by keeping our tires properly inflated
and accelerating gently.

Thus, Toyota made the right decision when it chose
to use the solar panel only to run a ventilation fan
when the passenger compartment gets too warm.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Put a doughnut in your tank 6.9
A friend of mine tries to help the environment

by fueling his diesel car with used
cooking oil (after appropriate
filtering and processing). Is this a

useful solution for the country
as a whole? What proportion
of our automobile fuel
could be supplied by used
cooking oil? (Note that the
reverse process of deep
frying doughnuts in diesel
oil is definitely not

recommended.)

HINT:Howmuchautomobilefueldoweuseeachday?

HINT:Howmuchoilisusedtodeepfryourfrenchfries,
doughnuts,andotherfoodeachday?
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ANSWER: We need to figure out how much fuel we
do use and how much used cooking oil we could use.
Let’s start with the fuel-ish question. If you’ve seen this
before, feel free to skip to the end of this paragraph
and wait for the rest of us there. A typical American
drives about 104 miles per year at between 10 and 40
miles per gallon. Using the geometric mean of 20 mpg,
each car burns V = 104 miles/20 mpg = 500 gallons
per year = 2 × 103 liters per year = 6 liters per day.
With about two cars for every three Americans, that
is 4 liters of automobile fuel (gasoline or diesel) per
person per day.

Now let’s estimate the amount of cooking oil used
(but not absorbed by the food) per person per day.
To do this we will need the amount of oil used per
serving of deep-fried food, the number of times the oil
is reused, and the number of servings consumed per
day. We can safely guess that it is less than 4 liters per
person.

The amount of oil needed to deep fry one serving
of french fries will be more than 1 ounce and less than
1 gallon (128 oz), giving a geometric mean of 10 oz (or
1
3 liter). This seems reasonable, as the french fries need
to be completely immersed in the oil.*

One batch of cooking oil will be used to deep fry
more than one and fewer than one hundred batches
of french fries, so we’ll take the geometric mean and
estimate ten. This means that only 1 new ounce of
cooking oil is used per batch of french fries.

The average American consumes more than one
serving of deep-fried food per week and fewer than

* I did these estimates using U.S. customary units because that is
what I use to cook with. I am therefore much more familiar with
the otherwise bewildering plethora of U.S. volume units than with
liters and milliliters. It is much easier for me to estimate many
quantities in U.S. customary units and then convert them to
metric units prior to performing calculations.
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one per day. Taking the geometric mean of 0.3 serv-
ings per day, this gives 0.3 ounces (or 10 ml) of
cooking oil used for deep frying per person per day.
This is about 2 × 10−3 of the automobile fuel con-
sumed. While burning used cooking oil in our cars
is commendable, it will not contribute significantly to
our energy needs.

Now let’s compare to reality. According to
Wikipedia, that oft-cited and utterly reliable source,
the world consumed about 80million tons of vegetable
oil in 2000. If the United States consumed 10% of
that, that amounts to 1010 kg per year, or 30 kg per
American per year or 0.1 kg per American per day.
That is ten times more than our estimate of the deep-
frying oil, but it includes all uses of oil. That is still only
2% of the automobile fuel consumed.

Note: converting food crops (oil seeds or corn)
to automobile fuel is a bad idea. We produce barely
enough food for the world now, and cars consume far
more energy than people.
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Perk up your car 6.10
According to researchers, waste
coffee grounds can provide a
cheap, abundant, and
environmentally friendly

source of biodiesel fuel.
What proportion of our
automobile fuel could be
supplied by used coffee

grounds?

HINT:Usetheautomobilefuelestimatefromthe
previousproblem.

HINT:Howmuchcoffeegroundsdoweuseperday?

HINT:Whatfractionofthecoffeegroundsisoil?

213



ANSWER: Some researchers claim that biodiesel de-
rived from used coffee grounds can provide significant
amounts of fuel [26].* In order to estimate the poten-
tial contribution of coffee grounds to our fuel con-
sumption, we need to estimate our fuel consumption,
coffee consumption, and the amount of oil we can
extract from coffee grounds. In the previous problem,
we estimated our average automotive fuel use at 4
liters per person per day and our average deep-frying
cooking oil use at 10 ml per person per day. Now we
just need to estimate the biodiesel we can make from
coffee grounds.

Probably about half of all Americans drink coffee.
We consume more than one and fewer than ten cups
per day, so we estimate that our total daily coffee
consumption is three cups per coffee drinker. It takes
about one tablespoon† (15 mL) of coffee to make each
cup, so we use

Vgrounds = (3 × 108 Amer)(0.5)(3 cups/day)

×(10mL ground coffee/cup)

= 1010 mL ground coffee/day

= 107 L ground coffee/day,

or about 107 kg of ground coffee per day.‡
The amount of oil in the coffee grounds is much

less well known. As usual, when we don’t know what
we’re doing, wewill bound the answer. The proportion
of oil in coffee grounds must be more than 1% (to be
useful as a fuel source) and less than 100%, so we will
estimate 10%. This means that the 107 liters of coffee
grounds would provide 106 liters of biodiesel per day.
This seems like a lot.
* And it would smell much better than other fuels.
† Another archaic American customary volume unit.
‡ This assumes a density of 1 kg/L, which is probably about a factor
of three too high.
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Comparing to reality, this estimate is consistent
with the worldwide potential of 3.4 × 108 gallons
per year of coffee-derived biodiesel calculated in the
paper [26].

Before we can decide whether it is a lot or a little,
we need to ask, “Compared to what?” In this case, we
should compare this to our overall automotive fuel
consumption. Let’s do this per person rather than per
country. The average American consumes two cups
of coffee per day,* which requires 30 mL of coffee
grounds. At 10% oil content, that would produce 3 mL
of biodiesel per person per day.

That 3mL is comparable to the 10mL of used cook-
ing oil we estimated in the previous problem. Both
are a tiny fraction of the 4 L (4,000 mL) automotive
fuel usage. Note that these results are not arguments
against developing these fuel sources. They are, how-
ever, strong arguments against relying on these as fuel
solutions.

Alas.

*We estimated 1.5, and I took the liberty of rounding up.
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Don’t slow down 6.11
How does the energy required to keep a car
moving on the highway compare with its
kinetic energy?

HINT:Mostoftheenergyspentkeepingthecarmovingis
usedtoovercomeairresistance.

HINT:KineticenergyK=(1
2)mv2.
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ANSWER: In order to answer this question, we need
to estimate the kinetic energy of a car and the energy
needed to keep it moving. The kinetic energy depends
on the mass of the car and its velocity, K = (1/2)mv2,
so we will need to estimate those quantities. A typical
small car has a mass of about 1 ton (103 kg). Highway
speed is about 65 mph, which is about 30 m/s. Thus,
its kinetic energy is

K = 1
2
mv2 = 1

2
(103 kg)(30m/s)2 = 5 × 105 J.

We estimated the force of air resistance on an
automobile back at the beginning of this chapter. To
save you the trouble of going all the way back there
and then coming all the way back here, we’ll just repeat
the answer: Fair = 400 N. Because the energy used to
overcome air resistance is E = F d, this means that in
1 kilometer (103 m) we have to supply E = 4 × 105 J
to overcome air resistance. This is about the same
amount of energy needed to accelerate the car from
0 to 30 m/s. Thus, just to keep moving at constant
speed, for every kilometer the engine has to supply the
same amount of energy as it took to accelerate the car
from 0 to 30 m/s.

At 30 m/s, a car travels 1 km in time: t =
103 m/(30m/s) = 30 s. It takes energy of E = 5×105 J
to accelerate a car from zero to 30 m/s (65 mph). That
amount of energy needs to be replaced every 30 s to
keep the car going at 30 m/s.

Note that heavier cars require more energy to
accelerate because they have more mass, and bigger
cars require more energy to overcome air resistance
because they have more frontal area.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Throwing tomatoes 6.12
Locavores claim that we should eat food that
is locally produced, not shipped from far away.
How much energy does it take to ship a tomato

across the country?
How much energy
would it take to

ship one year’s
worth of a
person’s
groceries
across the
United States?

HINT:Howmuchdoesatomatoweigh?

HINT:Tomatoesareshippedbytruck.

HINT:Whatisthemassofthegroceriesthatweconsume
eachyear?
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ANSWER: We estimated previously that it takes 100 L
of fuel to transport 1 ton of cargo across country by
truck. (We estimated that a 40-ton truck averaged
3 miles per gallon driving 3,000 miles.) The average
tomato weighs a trifle less than 1 ton, so we need
to estimate its weight. Tomatoes range tremendously
in volume—from less than one ounce to about a
pint. Because tomatoes have the density of water, that
means that they range in weight from less than 1 ounce
to about 1 pound (16 oz). Let’s use a large tomato with
a weight of about one pound (0.5 kg or 1/2,000 ton).
Given that it takes 100 L of fuel to transport a ton, it
will take

V tomato
fuel =

(
102

L
ton

)
(0.5 kg)

(
10−3 ton

kg

)

= 5 × 10−2 L = 50mL

of fuel to transport that tomato from California to
New York (or from New York to California). That
is about 2 ounces. However, we eat more than one
tomato a year.

If all of our food had to be transported across
country, it would take a bit more fuel. We each con-
sume between 1 and 10 pounds of food per day. The
geometric mean of 3 pounds per day multiplied by 300
days per year equals 1,000 pounds (0.5 ton) per year.
At 100 L/ton, that would require

V food
fuel = (102 L/ton)(0.5 ton) = 50 L

(10 gallons) of fuel to transport our food across
country.

Because we typically each consume 500 gallons of
fuel each year just for our cars and SUVs, an additional
10 gallons per year to transport our food is negligible.
Thanks to cheap shipping, we can enjoy all sorts of
out-of-season fruits and vegetables year-round, thus
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avoiding pellagra, scurvy, beriberi, and other nasty
deficiency diseases.

Of course, we can still consume local produce be-
cause it tastes better or because we like our local farms.
We just should not feel guilty about eating food from
far away.
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Heavenly Bodies

Chapter 7
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



Heavenly bodies attract each other.* They also move
in circles, rotating on their axes and revolving around
each other.† In order to describe their interaction
and motion, we need to introduce gravity, tides, and
rotational motion. As a result, this chapter will be
the most mathematical. Because rotational motion is
complicated, it will be introduced at the end of the
chapter.

We’ll consider two effects of gravity, force and
potential energy, and then discuss tidal forces. When
we are close to the surface of a planet, the gravita-
tional force on us from the planet is approximately
constant (Fgrav =mg , where m is your mass and
g = 10 N/kg = 10 m/s2 is the value of the constant
near the surface of the Earth), and the gravitational
potential energy is simply the force times the height
(P E = mgh). However, the further we move away
from the planet, the weaker the gravitational force
becomes. The force is

Fgrav = GMm
d2 ,

where M is the mass of the planet,m is the mass of the
other object (the Moon, a satellite, you, me), d is the
distance from the center of the planet to the center of
the other object, and G is a universal constant: G =
7 × 10−11 N-m2/kg2. Thus, if the distance from us to
the center of the Earth doubles, then the gravitational
force on us will drop to one-quarter as much.

According to Newton’s First Law, an object does
not change its speed or direction of motion un-
less a force acts on it. This means that satellites
travel in circular orbits because of gravitational forces.

* No, this does not refer to the celebrity of the moment.
† In this book, almost all orbits are approximated as circles. Sorry
about that, Kepler.
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The force needed to make something travel a circular
path is

Fcirc = mv2

R
,

where m is the mass moving in a circle, v is its speed,
and r is the radius of the circle.* This applies to the
Moon orbiting the Earth or to a car rounding a curve.

Because the gravitational force varies, the gravita-
tional potential energy is no longer simply force times
distance. Instead,

PEg = −GMm
d

.

This is defined so that our gravitational potential en-
ergy is zero when we are far from the planet and it
decreases as we get closer. An object falling toward the
earth will convert potential energy to kinetic energy;
its gravitational potential energy will decrease, and it
will speed up.

Tidal forces occur when, for example, the Moon
pulls harder on the near side of the Earth than it
does on the center of the earth. Tidal forces are the
difference between those two forces. The difference in
the gravitational force on a 1 kg object at the center of
the object and a 1 kg object on its surface is

Ftide = 2GM(1 kg)r
d3 .

In the case of tides caused by the Moon on the Earth,
M is the mass of the Moon, the (1 kg) refers to test
masses at the center and surface of the Earth, r is the
radius of the Earth, and d is the distance from the
center of the Earth to the center of the Moon. This
tidal force pulls objects at the surface of the Earth away
from its center.
* This force points toward the center of the circle. The technical
term for it is “centripetal force.” It is frequently referred to
colloquially (and incorrectly) as “centrifugal force.”
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Orbiting the Sun 7.1
How fast does the Earth go (i.e., what is its
speed) as it travels around the Sun?

HINT:Oneyear=π×107seconds.

HINT:TheEarthis1.5×108km(93millionmiles)from
theSun.
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ANSWER: In order to calculate speed, we need to
estimate time and distance. The Earth goes around the
Sun once a year. The Earth travels around the Sun in
a circle with a radius of 1 astronomical unit (1AU =
93 million miles = 1.5 × 108 km). The circumference
of a circle is c = 2πr . Therefore the Earth’s speed is
v = 6AU/yr. While true, this is remarkably unuseful.
We need to convert the numbers to more standard
units.

If we multiply the number of seconds in a minute
times the number of minutes in an hour times . . .

then we will find that 1 year = 3.15 × 107 s ≈ π ×
107 s.* Needless to say, the important number in that
equation is the exponent 7, not the prefactor π .

If the radius of the circle is r = 1.5 × 108 km, then
the circumference is c = 2πr = 109 km = 1012 m.
This means that the speed of the Earth in its orbit is

v = d
t

= 1012 km
π × 107 s

= 3 × 104 m/s = 30 km/s.

Wow. That is pretty fast.
(This question is repeated from Guesstimation.)

* I like telling my students that the constant π appears because the
earth goes around the Sun in a circle and that the actual value is
not quite equal to π because the orbit is not quite a circle. The
ones who nod their heads dutifully at this nonsense are clearly
the ones that will always vote for <insert name of hated political
party here>.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Flying off the Earth 7.2
What is the shortest day the Earth could have
without flying apart?

HINT:Theshortertheday,thefastertherotationalspeed
attheequator.

HINT:Gravityprovidesthecentripetalforcetokeepthe
Earthtogether.

HINT:TheradiusoftheEarthis6×106m.
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ANSWER: Gravity provides the force needed to keep
a rock on the equator traveling in a circle as the Earth
rotates on its axis. Let’s choose a green rock to make
the arithmetic easier.* The gravitational force on that
rock is F = mg . The force needed to keep it moving
in a circle is Fcirc = mv2/r , where v is the speed of the
rock and r is the distance from the rock to the center of
the circle (i.e., the center of the Earth, r = 6× 106 m).
We can rearrange this so that†

vmax =
√

F r
m

=
√
mgr
m

= √
gr

= [
(10m/s2)(6 × 106 m)

]1/2 = 104 m/s.

That seems rather fast. (Note that this result does not
depend on the mass [or color] of the chosen rock.)

Let’s compare it to the actual speed of a rock at the
equator. That rock will travel completely around the
circumference of the Earth every day. This means that
its speed is

v = d
t

= 2πr
1 day

.

The number of seconds in one day is a very useful
number to remember. There are 24 hours per day
and 60 minutes per hour which gives 24 × 60 ≈
1,500 minutes in a day. Multiplying by 60 seconds per
minute we get 1,500 × 60 ≈ 105 seconds per day.‡
* Or we could choose a 1 kg rock to make it more colorful.
† Fortunately, square roots are not that hard to approximate. Just
divide the exponent by two and take the approximate square
root of the coefficient. In this case we want the square root of
6 × 107. Because the exponent is odd, it is a little more
complicated. However, here we’ll just round up. This means that√
6 × 107 ≈

√
108 = 104. This is within 20% of the actual

answer, which is quite good enough.
‡ There are actually 86,400 seconds per day, but it is much easier
and more useful to remember 105. When we need the precision
of 86,400, we will also need a calculator.
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The speed of our rock is then

v = 6 × 6 × 106 m
105 s

= 400m/s,

or about 103 miles per hour.
This means that the maximum speed at which

gravity would barely keep our rock moving in a circle,
vmax = 104 m/s, is about twenty times faster than the
actual speed, v = 400m/s. Thus the Earth could rotate
twenty times faster before disintegrating. At that speed
the day would be twenty times shorter, or about 1 hour
long. The good news is that the work week would be
over in under five hours. The bad news is that even a
long weekend would last only 3 hours.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The rings of Earth 7.3
What is the minimum distance between the
Earth and the Moon before tides tear the
Moon apart (and it becomes a very pretty
set of rings)?

HINT:ThetidalforceexertedbytheEarthontheMoon
pullstheMoonapart.TheMoon’sgravitypullsittogether.

HINT:TheEarth’smassisME=6×1024kg.

HINT:TheMoon’smassisabout1%oftheEarth’s.

HINT:ThedistancefromtheEarthtotheMoonis
4×105km.

HINT:TheMoonhasthesameapparentsizeasafinger’s
widthatarm’slength.
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ANSWER: The Moon is moving away from the Earth
at about 4 cm per year, owing to tidal interactions.*
Therefore, in the distant past the Moon was signifi-
cantly closer to the Earth. We want to estimate the
minimum distance at which the Moon could orbit
the Earth without being torn apart by tides. This is
referred to as Roche’s Limit. The Earth exerts a greater
gravitational force on the closest part of the Moon
than on the center of the Moon. If the difference in
the Earth’s gravitational force on those two points is
greater than the Moon’s gravitational force, then the
Moon would be ripped apart, and the Earth would
have rings like Saturn.

In order to estimate this, we need a lot of informa-
tion. The tidal force of the Earth on theMoon depends
on the Earth’s mass, the distance from the Earth to the
Moon, and the radius of the Moon. The gravitational
force of the Moon exerted on a surface rock depends
on the Moon’s mass and radius.

Let’s first look at the gravitational pull exerted
by the Moon on a 1 kg rock on its surface. If you
remember that the gravitational force on the Moon’s
surface is one-sixth that of the Earth, then feel free
to skip the next couple of paragraphs. Otherwise, we
need to estimate

FMoon = GMM(1 kg)
r 2M

,

so we need to know the Moon’s mass and radius.
Fortunately, the size of the Moon is not hard to esti-
mate. If you hold up a finger at arm’s length, it just
covers the Moon. This means that the diameter of the
Moon divided by the distance to the Moon equals the
diameter of your finger (1 cm) divided by the distance
*More precisely, the average distance between the Earth and the
Moon is increasing by that amount. Precision of language is
important; numerical precision is only sometimes important.
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to your finger (1m), or in other words, that the diam-
eter of the Moon is 1% of the distance to the Moon.*
Given that the distance from the Earth to the Moon is
dEM = 4 × 105 km,† the radius of the Moon is half of
its diameter:

rM = 1
2
dM = 0.5×(4 × 108 m) × 1 cm

1m
= 2×106 m,

or 2 × 103 km. That is about one-third of the Earth’s
radius.

We can estimate themass of theMoon from its size.
Its radius is one-third of the Earth’s, so its mass should
be about

( 1
3
)3 ≈ 1

30 of the Earth’s. In reality the Moon
is significantly less dense than the Earth, so its mass
is about 1% of the Earth’s. Because the mass of the
Earth is ME = 6 × 1024 kg, the mass of the Moon is
MM ≈ 6 × 1022 kg.‡

Thus, the gravitational force of the Moon on a 1-kg
rock on its surface is

F = GMM(1 kg)
r 2M

= (7 × 10−11 N-m2/kg2)(6 × 1022 kg)(1 kg)
(2 × 106 m)2

= 1N.

If you remembered that the Moon’s gravity is one-
sixth of the Earth’s, then you got F = (1/6)(10N) =
1.6N, or about 60% more than our estimate.

Now let’s look at the tidal force that the Earth exerts
on the Moon, the difference between the gravitational
* This is also true of the Sun, which is the same apparent size as
the Moon.

† This is another one of those numbers that it is really useful to
know, at least for astronomical estimation.

‡ Yes, you can search the Internet and find out that this value is
about 25% too low. If you’re worried about that level of
precision, why are you still reading this book?
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force exerted by the Earth on a 1-kg rock at the center
of the Moon, and a 1-kg rock on the near side of the
Moon. This difference is

Ftide = 2GME (1 kg)rM
d3
EM

.

We want to set this equal to the 1N that the Moon’s
gravity exerts on that rock. This means that, solving
for the distance,

dEM =
(
2GME (1 kg)rM

1N

)1/3

=



2(7 × 10−11 N-m2/kg2)(6 × 1024 kg)

(1 kg)(2 × 106 m)
1N




1/3

= (2 × 1021 m3)1/3

≈ 107 m.

Although cube roots look scary, they are not really. All
we need to do is to divide the exponent by three. In
this case, the exponent is 21, so that the answer is a
little more than 107. Also, because we took the cube
root, it does not matter numerically whether we used
2 N or 1 N for the gravitational force of the Moon on
a 1-kg rock.

This means that the Moon could never have been
closer to the Earth than 107 m. At this point, the
distance from the surface of the Earth to the surface
of the Moon would be only

d = 107 m − 2 × 106 m − 6 × 106 m = 2 × 106 m.

In other words, the separation between the Earth
and the Moon would be about equal to the radius
of the Moon and much less than the radius of the
Earth.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

It is not in the stars to hold our destiny 7.4
Compare the relative strengths of the tidal forces
on a newborn baby from Saturn, the Moon, and
the obstetrician.

HINT:SaturnisabouttentimesfurtherfromtheSunthan
theEarthis.

HINT:Saturn’smassisaboutonehundredtimesthe
Earth’smass.
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ANSWER: Astrology claims that the positions of the
planets when we are born influences our personalities
and our destinies. The only physical force that the
planets can exert on us is gravitational. The average
force will not affect us, but the difference between the
forces exerted on our heads and on our feet just might.
That difference is the tidal force, so let’s estimate that
for different objects. The object exerting the biggest
tidal force is probably the Earth, but that will have the
same effect on all of us, so it cannot differentiate our
destinies.*

The tidal force is the difference in the gravitational
force exerted on, say, our head and our feet. Let’s
consider two small pieces of us, each of massm so that
the tidal force is

Ftide = 2GMmh
d3 ,

where M is the mass of the object attracting us, h is
our height, and d is the distance from us to the center
of that object. Because m and h are characteristics of
us, they will be the same for all attractors. Similarly, G
and 2 never change. Then the relative size of the tidal
force depends only on the mass and distance of the
attractor

Ftide ∝ M
d3 ,

so we only need to estimate those masses and dis-
tances.

If we don’t know the mass of Saturn, we can esti-
mate it with respect to the Sun. The mass of the Sun
is about 106 times greater than the mass of the Earth.
The mass of the gas giant planets will be geometrically
closer to the Earth’s mass than to the Sun’s mass.
Because the geometric mean of the Earth’s and Sun’s

* It cannot integrate them either.
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masses is 103 times that of the Earth, we will estimate
the mass of Saturn as 102 times that of the Earth, or
MS = 6 × 1026 kg.*

We can estimate the distance from the Earth to
Saturn in a couple of different ways. Pluto is about
100AU from the Sun. Because there are two planets
between the Earth and Saturn and two more between
Saturn and Pluto, we’ll take the geometric mean of
1 and 100AU to estimate 10AU for the distance to
Saturn. Alternatively, we can estimate that the distance
from the Sun to each succeeding planet doubles. This
would give a distance to Saturn of 23 = 8AU. As
the distance from the Sun to Saturn is much greater
than the distance from the Sun to the Earth, the
relative orbital positions of the Earth and Saturn can
be ignored (i.e., it does not make much difference
whether the distance from the Earth to Saturn is
10 + 1 =11AU or 10 − 1 = 9AU).

We remember the mass and distance to the Moon
from the previous problems as MM = 6 × 1022 kg
and dM = 4 × 108 m. We can estimate the mass
and distance to the obstetrician as MO = 102 kg and
dO = 1m (or even closer).

Now it’s just arithmetic:

Ftide ∝ M
d3

F Saturn
tide ∝ 6 × 1026 kg

(1.5 × 1013 m)3
= 2 × 10−13 kg/m3

FMoon
tide ∝ 6 × 1022 kg

(4 × 108 m)3
= 10−3 kg/m3

*We got lucky here. The gas giant masses range from fourteen to
three hundred times that of the Earth. Saturn’s mass just
happens to be almost exactly one hundred times that of the
Earth’s. However, it really does not matter. Our mass estimate is
within a factor of ten for all four gas giants.
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F obs
tide ∝ 100 kg

(1m)3
= 102 kg/m3

The units are irrelevant. I include them here just to
be pedantic. The important point to notice is that the
tidal force on a newborn baby from the obstetrician is
almost a million times larger than that of the Moon,
which is a billion times larger than that of Saturn.

Why would anyone think that the planets could
influence our destinies?
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Orbiting a neutron star 7.5
How closely could we safely orbit a neutron star,
considering only gravitational effects?

HINT:Weareinfreefallinorbit.

HINT:Theneutronstarwillpullharderonthenearsideof
ourbodiesthanonthefarside.Thistidalforcewill
stretchus.

HINT:Theneutronstarmasswillbesimilartothemass
oftheSun,M�=2×1030kg.

HINT:Ftide=2GM(1kg)r/d3.
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ANSWER: When we orbit close to a neutron star, the
immense gravitational force of the star provides the
centripetal force needed to keep us moving in our
orbit.

Let’s assume that the neutron star has the same
mass as our Sun. We can estimate this in several ways.
We might remember that the Sun’s mass is a million
times that of the Earth, and ME = 6 × 1024 kg. We
can also calculate the Sun’smass from the gravitational
force exerted on the Earth, Fg = GM�mearth/r 2,
which provides the centripetal force for the Earth
to move in its orbit, Fc = mearthv

2/r , where r is
the distance from the Earth to the Sun and v =
2π(1 AU)/(1 yr) is the speed of the Earth in its orbit.
That will give M� = 2 × 1030 kg.

If we are in a circular orbit 100 km (105 m) from
the center of a neutron star with the same mass as our
sun, then the average gravitational force on us will be
enormous

Fg = GM�m
r 2

= (7 × 10−11 N-m2/ kg2)(2 × 1030 kg)(100 kg)
(105 m)2

= 1012 N.

This gives an average gravitational acceleration of a =
(1012 N)/(100 kg) = 1010 m/s2. However, as we will
be in free fall, we will not feel this average force.* As
we fall, we feel weightless, whether we are jumping off
a chair, riding in the “vomit comet,” or orbiting the
Earth.

*When we are in orbit around the Earth or another object, we are
forever falling. However, we are moving fast enough that we fall
around the Earth, rather than falling to the Earth. This fulfills
Douglas Adams’s definition of flying as “Throwing yourself at
the ground and missing” [4].
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The centers of our bodies will be exactly 105 m from
the neutron star and so will experience this force and
will orbit the neutron star at a certain speed. Our
feet will be about 1m closer to the neutron star and
so will experience a greater force and will want to
orbit the neutron star at a greater speed. Normally, we
would ignore the difference between the force exerted
at d = 105 m and the force exerted at d = 105 − 1m.
However, in this case the difference of those two forces
acting on two parts of our bodies acts to pull our
bodies apart.

In order to estimate the minimum safe distance,
we need to estimate the maximum difference in grav-
itational acceleration that we can tolerate. If we sit
on a high surface with our lower legs dangling over
the edge, we can imagine a heavy weight hanging
from one foot. We can easily tolerate a 10-kg (20-lb)
mass, probably tolerate a 100-kg (200-lb) mass, and
definitely not tolerate a 103-kg (1-ton) mass. Thus,
the maximum tidal force we can withstand is F max

tide =
mg = 103 N.

The tidal force (difference in gravitational forces)
on two 1-kg masses is

Ftide = 2GM(1 kg)r
d3 < F max

tide = 103 N,

so the minimum safe distance is

d =
(
2GM(1 kg)r

F max
tide

)1/3
.

We have already determined the distance from our
centers to our feet (about 1m) and the maximum
force difference we can withstand, so now it’s just
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arithmetic:

d =
(
2GM(1 kg)r

F max
tide

)1/3

=



2(7 × 10−11 N-m2/ kg2)(2 × 1030 kg)

(1 kg)(1m)
103 N




1/3

= (3 × 1017 m3)1/3

= 106 m,

where we take the cube root by dividing the exponent
by three (and rounding up).*

Thus, even at a distance of 106 m, or 103 km, from a
one-solar-mass neutron star, the tidal forces would be
gigantic. In practice, I would want to stay at least ten
times further away. The tidal forces at 104 km would
be 103 times smaller, but still definitely noticeable.†

*We could be more precise by rewriting 3 × 1017 as 300 × 1015.
Then the cube root of 1015 is 105 and the cube root of 300 is
between 6 and 7. This would change our answer from 106 m to
7 × 105 m. Big deal.

† For a great fictional treatment, see Larry Niven’s short story
“Neutron Star.”
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

How high can we jump? 7.6
What is the largest moon (or asteroid) that we can
jump off? In other words, assuming reasonable
densities, what is the radius of the largest rocky
sphere from which we can reach escape velocity
by jumping?

HINT:Wecanjumpoffamoonwhenourinitialkinetic
energyexceedsourinitialgravitationalpotentialenergy,
PEg=−GMm/r.

HINT:WhenwejumponEarth,ourinitialkineticenergy
equalsourpotentialenergyattheheightofourjump:
PE=mgh.

HINT:Themassofamoonorasteroidincreasesasthe
cubeofitsradius,M=4ρr3,whereρisthedensityand
π=3.

HINT:Thedensityofrockisgreaterthanthatofwater
(ρ=1ton/m3)andlessthanthatofiron
(ρ=10ton/m3).

245



ANSWER: There is no way we can jump off the Earth.
Our jumping speed is on the order of m/s, and escape
velocity is on the order of 10 km/s. In order to jump
off of an asteroid or moon, we need to provide enough
kinetic energy to overcome our gravitational potential
energy. The kinetic energy of our jump will not de-
pend on the asteroid’s size; our gravitational potential
energy will.

Let’s start by estimating our jump energy. When
we jump on the Earth, we start with a lot of kinetic
energy (K E = ( 1

2
)
mv2), convert it all to potential

energy (P E = mgh) at apogee,* and then convert
it back to kinetic energy as we fall back to the Earth.
A typical human can jump about 1m (more than
10 cm and definitely less than 10m). Thus, a typical
100 kg human can jump with

E = (100 kg)(10m/s2)(1m) = 103 J

of kinetic energy.†
Let’s now consider a moon (or asteroid). As we

increase the moon’s radius, its mass will also increase:
M = ρV , where ρ is its density and V is its volume. Its
density will be between that of water (ρ = 103 kg/m3)
and iron (ρ = 10 × 103 kg/m3), so we will use the
geometric mean of ρ = 3× 103 kg/m3. Then the mass
of the asteroid will be

M = 4
3
πr 3ρ = 4r 3ρ.

* A fancy term for the top of the jump.
† Note that this value is proportional to our mass. Our final result
will not depend on our mass, however, as gravitational potential
energy is also proportional to mass.
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Our gravitational potential energy as we stand on its
surface will be

P Eg = −GMm
r

= −G4R3ρm
r

= −4Gρr 2m.

In order to be able to jump off that moon, our initial
kinetic energy must be greater than the magnitude of
our potential energy:

4Gρr 2m < mgh

r 2 <
gh
4Gρ

r <




(10m/s2)(1m)
4(7 × 10−11 N-m2/ kg2)

×(3 × 103 kg/m3)




1/2

<
(
107 m2)1/2

< 3 × 103 m.

(Note that
√
107 = √

10 × 106 = 3 × 103.) Thus,
we can achieve escape velocity by jumping from the
surface of a moon (or asteroid) that has a radius less
than 3 km. While this information is not particularly
useful today, it could be quite important when we start
mining the asteroid belt.

On an object this small, we would weigh only

F = GMm
r 2

= G4ρr 3m
r 2

= 4Gρrm
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= 4(7 × 10−11 N-m2/ kg2)(3 × 103 kg/m3)

×(3 × 103 m)(100 kg)

= 0.3N,

or about 1 ounce.
Note that it takes half as much energy to orbit the

asteroid as to escape from it completely. If we could
jump horizontally, we could easily go into orbit.*

* There is a wonderful science fiction story by Ben Bova titled
“Men of Good Will” about the consequences of firing weapons
on the Moon when the projectiles go into orbit.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Collapsing Sun 7.7
How much energy would be released

by stellar collapse? If the Sun
collapsed into a neutron star,
how much gravitational

energy would it
release?

HINT:ThemassoftheSunisM�=2×1030kg.

HINT:Thedensityoftheatomicnucleusis
ρ=3×1017kg/m3.

HINT:Thegravitationalpotentialenergyoftwomasses,
Mandm,separatedbyadistancerisPE=−GMm/r.

HINT:Wecanapproximatethegravitationalpotential
energyofasphereofmassMandradiusRastheenergy
oftwosmallerobjectsofmassM/2separatedbya
distancer.
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ANSWER: When very massive stars run out of nuclear
fuel, they collapse. This collapse releases tremendous
amounts of gravitational energy, resulting in an explo-
sion called a supernova. If the original star is massive
enough, but not too massive, then the stellar remnant
becomes a neutron star, with a density about equal to
that of the atomic nucleus.* Although the Sun is not
massive enough to either cause a supernova or end up
as a neutron star, it is about the samemass as a neutron
star (the remnant of the explosion of more massive
stars), so the gravitational energy released would be
comparable.

In order to estimate the gravitational energy re-
leased by stellar collapse, we need to estimate the grav-
itational potential energy before and after the collapse.
Our formula for gravitational potential energy,

P E = −GMm
r

,

applies to two objects of masses, M and m, separated
by a distance r . We can approximate the potential
energy of a spherical object by dividing it into smaller
spheres and calculating the energy of each pair of
spheres. The first step is to divide it into two equal
mass spheres separated by the radius, r , of the initial
object.† Thus we need to estimate the mass, current
radius of the Sun, and the radius of the Sun as a
neutron star.

We estimated the mass of the Sun in a previous
problem as M� = 2 × 1030 kg. The diameter of
the Sun is easier. We might remember that the Sun’s
radius is one hundred times larger than the Earth’s.

* If the original star is too massive, then the stellar remnant
becomes a black hole.

† Yes. We could be more precise by calculating the radius of each
of those smaller spheres and using that. But we won’t. Well, I
won’t.
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Alternatively, if we hold a finger (preferably our own)
at arm’s length, it almost exactly covers the Sun. This
means that the diameter of the Sun divided by its
distance equals the width of our finger divided by its
distance or that

r� = d�
2

= dfinger
2larm

× (1 AU)

= 10−2 m
2m

(1.5 × 1011 m)

= 109 m,

where we use 1 cm for a finger’s width and 1m for an
arm’s length.

We can determine the change in the Sun’s radius
from the difference between the radius of an atom
and the radius of its nucleus. The size of an atom
is about 1 angstrom (10−10 m), and the size of the
atomic nucleus is about 1 fermi (1 fm = 1 femtometer
= 10−15 m). If the constituents of the Sun decrease in
radius by a factor of 105, then the Sun will decrease
in radius by the same factor from r� = 109 m to
rns = 104 m. Alternatively, if we know the density
of the nucleus, ρ = 3 × 1017 kg/m3, then we can
determine the neutron star’s radius from its density
and mass, M = Vρ = 4πr 3ρ, so

rns =
(
M�
4πρ

)1/3

=
(

2 × 1030 kg
12 × (3 × 1017 kg/m3)

)1/3

= (5 × 1011 m3)1/3

= 104 m,

or 10 km.
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Now we can plug in the numbers.

PE� = −G (M�/2)2

r�

= − (7 × 10−11 N-m2/ kg2)(1030 kg)2

109 m
= −7 × 1040 J.

Note that this number by itself means almost noth-
ing.* We need to calculate the post-collapse potential
energy and take the difference between the two to
determine the energy released.

Fortunately, the post-collapse potential energy is
easy to calculate. Because the radius decreases by a fac-
tor of 105, the gravitational potential energy changes
by a factor of 105, so

PEns = 105PE� = −7 × 1045 J,

and the gravitational potential energy decreases by
about 1046 J. This immense energy is transformed into
other forms of energy.

This is, of course, an immense amount of energy
on any human scale. But we need to compare it to
cosmic scales. The Sun emits about 4× 1026 W. There
are about 1011 stars in our galaxy, so the galaxy emits
about 1038 W (rounding up). Thus, 1046 J represents
the total output of the entire Milky Way galaxy for

t = (1046 J)/(1038 W) = 108 s,

or about three years! This is an immense amount of
energy, even on a cosmic scale. This is the energy that
powers supernovas, which outshine entire galaxies.

Wow.
* This is approximately the gravitational energy released when the
Sun formed out of gas in the primordial solar system (i.e., when
the gas that forms the Sun moved from very large distances
where P E = 0 to distances within the radius of the current Sun).
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Splitting the Moon 7.8
How large a collision would it take to split the
Moon? In other words, how much energy
would it take to split the Moon into two
approximately equal pieces and separate
those pieces?

HINT:TheMoonisheldtogetherbygravity.

HINT:Wecanapproximatethegravitationalpotential
energyofasphereofmassMandradiusrastheenergy
oftwosmallerobjectsofmassM/2separatedbya
distancer.

HINT:WeestimatedthemassandradiusoftheMoonin
anearlierproblem.

HINT:Thegravitationalpotentialenergyoftwomasses,
Mandm,separatedbyadistancerisPEg=−GMm/r.
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ANSWER: In the previous question, we looked at
how the gravitational energy of the Sun would change
if it shrank dramatically. We approximated this by
modeling the Sun as two halves separated by a distance
r , and then decreased r dramatically. In order to
estimate the energy needed to split an object, we will
make the same approximation and instead increase r
dramatically. Here we go.

We estimated the mass and radius of the Moon
in a previous problem as MMoon = 6 × 1022 kg and
rMoon = 2 × 106 m. Thus the current gravitational
potential energy of the Moon is approximately

PE = −G (MMoon/2)2

rMoon

= − (7 × 10−11 N-m2/ kg2)(3 × 1022 kg)2

2 × 106 m

= −3 × 1028 J.

In order to split the Moon, we will increase the separa-
tion of the two halves from r = 2 × 106 m to infinity.*
This would increase the potential energy to zero, so we
would have to provide E = +3 × 1028 J. This seems
like a lot.

Now of course we need to ask “compared with
what?” We can first consider it on a human scale. The
United States uses about a terawatt (1012 W) of electri-
cal power. It would take t = (3 × 1028 J)/(1012 W) =
3 × 1016 s = 109 years to generate that much energy.
A megaton of TNT contains 4 × 1015 J, so we would
need about 1013 large nuclear bombs. Okay. Unsur-
prisingly, this is a huge amount of energy on a human
scale.

* If we’re impatient, we only need to increase the separation of the
two halves by a factor of ten. Getting all the way to infinity can
take a very long time [27].
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Let’s look on a cosmic scale and compare it with the
energy of a large meteor. Meteors also orbit the Sun,
and so have speeds at Earth orbit that are similar to
that of the Earth, or about 3 × 104 m/s. Their kinetic
energy is K E = ( 1

2
)
mv2, so the mass of a meteor

needed to split the Moon is

mmeteor = P Eg

(1/2)v2

= 3 × 1028 J
0.5 × (3 × 104 m/s)2

= 6 × 1019 kg.

At a density of 3 × 103 kg/m3, this gives a volume
of V = m/ρ = (6 × 1019 kg)/(3 × 103 kg/m3) =
2 × 1016 m3 = 2 × 107 km3. That is a meteor that is
between 100 and 1,000 km on a side. That’s not just
any meteor; that’s larger than most of the moons in
the solar system.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Splitting a smaller moon 7.9
How large a collision would it take to split
Mars’s moon Phobos? In other words, how
much energy would it take to split Phobos into
two approximately equal pieces and separate those
pieces?

HINT:Readthepreviousquestionfirst.

HINT:Phoboscannotbeseenwiththenakedeye,butit
canbeseenwithareasonabletelescope.

HINT:Wedeterminedthesensitivityofthenakedeyein
anearlierquestion.

HINT:PhobosisilluminatedbytheSun.

HINT:Marsisabout50%furtherfromtheSunthanthe
Earthis.
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ANSWER: In the previous question we estimated
the energy needed to split the Earth’s Moon. Now
let’s pick on a moon that’s closer to our own size.
The next nearest moon to us is Phobos (or Deimos,
Mars’s other moon). Let’s estimate its size and mass.
We can estimate the size of Phobos from the fact
that it is not visible with the naked eye but can
be seen with a reasonably good telescope. Because
we have already estimated the sensitivity of our
eyes, by estimating how much light would reach
our eyes from different size objects at Phobos’s dis-
tance, we can place an upper limit on the size of
Phobos.

Mars (and hence Phobos) is the fourth planet from
the Sun. If the inner planets were equally spaced,
then Mars would be about 1.3 AU (astronomical unit)
from the Sun and between 0.3 and 2.3 AU from
the Earth. The planets are, of course, not evenly
spaced, and Mars is actually 1.5 AU from the Sun.
Even so, that estimate of the minimum distance from
the Earth to Mars is off by less than a factor of
two.

Given that the solar power density decreases as
the square of the distance, Mars gets half as much
sunlight as the Earth, or only pSun = 500 W/m2.
The reflected solar power will be the power den-
sity times the reflecting area of Phobos. This power
will spread out over the area of a sphere of radius
rE−M = 0.5AU as it travels 0.5 AU back to our
eyes. We also estimated the minimum power den-
sity that we can detect as pmin = 2 × 10−12 W/m2

(see “Light a single candle” in chapter 4). This
gives

pmin = pPhobos = pSunAPhobos

4πr 2E−M
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so that

APhobos ≤ pmin4πr 2E−M
pSun

≤
(2 × 10−12 W/m2)×
(4π(0.5 × 1.5 × 1011 m)2)

500W/m2

≤ 4 × 108 m2

APhobos ≤ (2 × 104 m)2,

or about 20 km in diameter. Note that if we include the
reflectivity of Phobos and the effects of atmospheric
absorption, then our upper limit will be larger. Let’s
increase the length limit to 50 km to account for these
factors.

Because Phobos can be seen with a reasonable tele-
scope (better than Galileo’s and worse than Mt. Palo-
mar’s), the lower limit on its reflective area is probably
about one hundred times smaller than the upper limit.
Reducing the area by a factor of one hundred will
reduce the diameter by a factor of ten. This means that
its diameter is between 5 and 50 km, so we will take
the geometric mean and estimate 20 km. Both Deimos
(d = 8 km) and Phobos (d = 25 km) fall between our
upper and lower limits.

Note that, if we were familiar with astronomical
visual magnitudes, we could have estimated Phobos’s
size (relative to Mars) from the apparent magnitude of
Mars (about m = −2), the limit of human perception
(m = 6.5), and the fact that luminosity decreases by
a factor of ten for each increase of 2.5 in magnitude.
If Phobos has luminosity m = 8, then it is 104 times
less bright thanMars with 104 times less area. As Mars
has a radius of about r = 4 × 103 km (less than the
Earth’s and more than the Moon’s), that would give
an upper limit for Phobos’s radius of 40 km. By the
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same telescope argument, the lower limit would be
4 km.

Now that we know the diameter, we can es-
timate the density to determine the mass using
m = ρV . The small moons are probably rocky,
so they will have a density between that of water
(ρ = 103 kg/m3) and iron (ρ = 10 × 103 kg/m3), or
about ρ = 3 × 103 kg/m3.*

MPhobos = ρV = ρ
4
3
πr 3

= 4(3 × 103 kg/m3)(104 m)3

= 1016 kg.

Now we have all the information we need to esti-
mate the energy needed to split Phobos. The current
gravitational potential energy of Phobos is approxi-
mately

P E = −G (MPhobos/2)2

rPhobos

= − (7 × 10−11 N-m2/ kg2)(5 × 1015 kg)2

104 m

= −2 × 1017 J.

In order to split Phobos, we would need to increase
the separation of the two halves from 104 m to infinity.
This would increase the potential energy to zero, so we
would have to add+2×1017 J. This is about ten orders
of magnitude less than that needed to split the Moon.

This is a lot of energy, but only on a human scale.
It is equivalent to less than one year’s electrical energy

* The latest measurements indicate that the density of Phobos is
1,876 ± 20 kg/m3. This stunning precision comes from
measuring the gravitational effect of Phobos on spacecraft
orbits [28].
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production of the United States and only about one
hundred 1-megaton bombs. Of course, we would have
to get to Phobos first.

Note that, as a practical matter, we would also have
to include the effects of Mars’s gravity. However, this
is a not a very helpful use of the word “practical.”
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Spinning faster and slower 7.10
The Sun rotates on its axis once a month. Neutron
stars spin around in milliseconds. Ice skaters spin
faster and slower by pulling in and extending their
arms. Divers and gymnasts spin faster by tucking in
their legs. These are examples of the conservation
of “angular momentum.” The term “conservation,”
implies that the total amount of angularmomentum in
the universe does not change. We have explored many
of the consequences of energy conservation; now we
will explore a few of the consequences of angular
momentum conservation.

The angular momentum of an object is the product
of its “rotational inertia” and “rotational velocity.” Just
as inertia (mass) measures the difficulty of changing
the velocity of an object (accelerating it), rotational
inertia measures the difficulty of changing the rota-
tional velocity (colloquially called “spin”) of an object.
The greater the mass of an object, the harder it is to
change its spin. The further the mass is from the axis
of an object, the harder it is to change its spin. For
example, it is easy to spin a heavy iron pipe along its
long axis (i.e., roll it), when all its mass is close to the
axis. Then its mass travels in small circles. It is much
more difficult to spin the same pipe perpendicular to
its long axis when much of its mass is far from the axis
of rotation. Then its mass travels in large circles. The
formal expression for rotational inertia (sometimes
called “moment of inertia”) is

I ∝ mr 2,

where m is the object’s mass and r is the typical
perpendicular distance from the axis of rotation to the
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farthest mass. Depending on the shape and mass dis-
tribution, there is a proportionality factor that varies
from about one-half to one. We will ignore this factor.
In addition, because we’ll only be dealing with spheri-
cal stars and planets, r will always be the radius of the
object.

The rotational velocity, ω, is how fast the object
spins around a given axis. As that is too simple, in-
stead of measuring it in simple units like rotations
per second, physicists make it more complicated by
measuring it in radians per second. However, one
rotation per second equals 6 radians per second, so it
is not that much more complicated.*

The angular momentum of a spinning solid
object is

L = Iω,

whereω is the rotational velocity in radians per second
and I is the rotational inertia.

An isolated object cannot change its angular mo-
mentum. However, it can change its rotational inertia
and its rotational velocity. If its rotational inertia de-
creases, then its rotational velocity will increase, just as
happens when a spinning ice skater pulls in her arms.

Now there is just one more wrinkle. A moving
small object, such as a baseball, also has angular mo-
mentum. Imagine a baseball bat resting on an icy
pond. If a baseball hits it off center, then the baseball
bat will spin. The further off center the collision, the
faster the bat will spin. Because we know that angular
momentum is conserved (that the total angular mo-
mentum of baseball plus bat before the collision equals
their total angular momentum after the collision), the
baseball must have had angular momentum before
the collision. This angular momentum is fortunately
* To be precise, one rotation per second equals 2π radians per
second.
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simpler than the other type. The angular momentum
of a small object hitting a larger one is

L = mvr,

where m is the mass of the small object, v is its
velocity, and r is the minimum distance between its
path and the axis of rotation of the larger object. For
example, suppose a meteorite hits the Earth on the
equator. If it hits the ground perpendicularly, then it
will not change the Earth’s rotation. Because its path
would intersect the Earth’s axis, r = 0, and thus its
angular momentum with respect to the Earth’s axis is
zero, L = 0. If it hits the ground tangentially, then
r = rEarth = 6 × 106 m, and it will add its angular
momentum to that of the Earth. Looking down on the
Earth from above the North Pole, the two cases would
look like this:

Incoming meteor

Pole

North

Pole

North

r = 0

r = R
E

Earth Earth

Incoming meteor
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Shrinking Sun 7.11
How fast would the Sun
rotate if it collapsed
to a neutron star?
Assume that
the mass stays
the same but
the radius
decreases.

HINT:Angularmomentumisconserved.

HINT:Therotationalinertiawilldecreasesothatthe
rotationalvelocitymustincreasebythesamefactor.

HINT:TheSunrotatesonitsaxisapproximatelyoncea
month.

HINT:WeestimatedthechangeintheSun’sradiusasit
shrinkstoaneutronstarinapreviousquestion.

HINT:ThemassoftheSundoesnotmatter.
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ANSWER: This problem is just like the spinning ice
skater. Angular momentum, L = Iω, is conserved.
When she pulls in her arms, she reduces her rotational
inertia, I . This causes her rotational speed, ω, to
increase in order to keep her angular momentum
unchanged. We can rewrite this as

L = Ioldωold = Inewωnew

ωnew = ωold × Iold
Inew

= ωold × M�r�2

M�rns 2

= ωold × r�2

rns 2
.

This means that we need to estimate the Sun’s ra-
dius, r�; the neutron star’s radius, rns ; and the Sun’s
rotational speed, ωold. Fortunately we have already
estimated the radii earlier in this chapter as r� =
109 m and rns = 104 m. The rotational speed will then
increase by a factor of (r�/rns )2 = 1010.

Now we just need to estimate the Sun’s rotational
speed. If we have looked at sunspots, we know that
they remain visible on the Sun’s surface for many days.
This implies that the Sun rotates about once a month
(more than once a week and less than once a year). If
we haven’t ever looked at sunspots, then (a) it is much
harder to estimate the Sun’s rotational speed and (b)
we are missing an interesting experience.

Thus,

ωnew = ωold × r�2

rns 2

= 1 rotation
1month

× (109 m)2

(104 m)2

= 1010 rotations
30 × 105 s

= 3 × 103 rotations/s.

or one rotation in 0.3 ms. Wow. That is fast.
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The existence of neutron stars was deduced from
the observation of pulsars, objects that emit a powerful
radio signal that repeats every few milliseconds.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Spinning Earth 7.12
What is the angular momentum of the Earth
as it spins on its axis?

HINT:TheEarthcompletesonerotationaday.

HINT:ThemassoftheEarthisMEarth=6×1024kg.

HINT:Thereare105secondsinaday.
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ANSWER: This is more of a straightforward calcu-
lation than an estimation. In order to estimate the
angular momentum of the Earth as it spins on its
axis, we need to know its mass, radius, and rotational
velocity. The rotational velocity is easiest:

ω = 2π radians
1 day

= 2π radians
105 s

= 6 × 10−5 rad/s.

Fortunately, we wrote the mass and radius of the
Earth on our shirt cuff in order to solve previous ques-
tions. After glancing down we know that MEarth =
6 × 1024 kg and rEar th = 6 × 106 m. This gives the
rotational inertia of the Earth as

I = mr 2 = (6 × 1024 kg)(6 × 106 m)2

= 2 × 1038 kg-m2.

Now we can calculate the Earth’s angular momen-
tum as

L = Iω = (2 × 1038 kg-m2)(6 × 10−5 rad/s)

= 1034 kg-m2/ s.

The next questions we should ask are “How big is
this?” and “Compared with what?” However, let’s wait
to make comparisons until we calculate a few more
angular momentums.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The dinosaur killer and the day 7.13
We think that a large meteorite wiped out the
dinosaurs. By how much could a 1 km meteorite
impact change the length of the day?

HINT:Comparetheangularmomentumofthemeteorite
asithitstheEarthwiththeangularmomentumofthe
Earth.

HINT:Ameteoritehasadensitybetweenthatofwater
andiron.

HINT:Allobjectsinthesolarsystemhaveaboutthesame
speedwhentheyare1AUfromtheSun(includingthe
Earth).
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ANSWER: When a meteorite hits the Earth, it adds its
angular momentum to that of the Earth. It contributes
the maximum angular momentum to the Earth when
it hits the Earth tangentially at the equator. Because
angular momentum L = mvr , we need to estimate
the meteorite’s mass and speed.

Let’s maximize the mass by choosing an iron mete-
orite (or by having an iron meteorite choose us). Then
its mass will be

m = ρV = (104 kg/m3)(1 km)3

= (104 kg/m3)(103 m)3 = 1013 kg.

Because the meteorite and the Earth both orbit the
Sun, when they are at the same distance from the
Sun they will have about the same speeds. The Earth’s
speed around the Sun is

v = 2π1AU
1 year

= 2π(1.5 × 1011 m)
π × 107 s

= 3 × 104 m/s,

so the relative speed of the Earth and the meteorite
will be between zero and 6 × 104 m/s, depending on
whether it is a following or a head-on collision. Again,
let’s choose the larger value for the maximum, umm,
impact.

The angular momentum of the meteorite is now

Lmeteorite = mvr

= (1013 kg)(6 × 104 m/s)(6 × 106 m)

= 4 × 1024 kg-m2/ s.

Now that we have estimated two angular momen-
tums, we can compare them. The angular momentum
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of the Earth as it rotates on its axis is LEarth =
1034 kg-m2/s, or about 1010 times larger. This means
that the meteorite impact would change the Earth’s
angular momentum, and hence the length of the day,
by one part in 1010. As there are 105 seconds in a day,
this would change the length of the day by about 10−5 s
or 10µs.

Even if it was a 10-km asteroid with 103 times more
mass, it would only change the length of the day by
0.01 s.

The dinosaurs probably overlooked this particular
effect of the collision.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The Yellowstone volcano and the day 7.14
Yellowstone lies on top of a hot spot
in the Earth’s crust and has
produced three
supervolcano
eruptions in the
past few million
years. By how
much would
a supervolcano
eruption change
the length of the day?

HINT:Comparetheangularmomentumofthevolcano
ejectawiththeangularmomentumoftheEarth.

HINT:MountSaintHelensejectedabout1km3of
material.

HINT:Estimatethemassthatisredistributedtohigheror
lowerlatitudesbyaneruption.
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ANSWER: In the previous question, we looked at the
change in the Earth’s angular momentum caused by
something hitting it. This time, we are looking at
the change in the Earth’s angular momentum caused
by something leaving it. However, we know that a
Yellowstone supervolcano eruption would have much
less effect than a 10-km meteorite strike because past
supervolcano eruptions have had far less effect on the
biosphere. This implies that the energy released would
be far less.

Also, in order for a supervolcano to change the
angular momentum of the Earth, it has to eject ma-
terial away from the Earth. If the material lands
back on Earth, then any angular momentum change
caused by the material being launched would be
canceled when it lands. There are two reasons why
it is unlikely that a volcanic eruption (even a su-
per one) would send significant amounts of ma-
terial into Earth orbit. The first is that the ejecta
would need to reach speeds of 7 km/s or higher. This
seems rather improbable. The second is that if this
had ever happened, so much debris in Earth orbit
would have wrecked our communication and other
satellites.

Let’s try to estimate the parameters of a super-
volcano. Mount Saint Helens ejected about 1 km3 of
material. A supervolcano would eject about 103 times
as much. This is the same size as a 10-km meteorite.
However, the speed of the ejectedmass would bemuch
less than the 30 to 60 km/s of the meteorite. Because
the material does not achieve Earth orbit, its speed
must be less than 7 km/s. The speed is almost certainly
larger than the speed of sound, 300m/s, so we can take
the geometric mean and estimate that v = 2 km/s.
Most of the eruption will be upwards, so we’ll assume
that 10% is directed tangentially. This means that the
angular momentum of the ejected material (while it is
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in flight) is

L = mvr = (ρV)vr

= 0.1(3 × 103 kg/m3)(104 m)3(2 × 103 m/s)

×(6 × 106 m)

= 4 × 1024 kg-m2/ s.

This is 1010 times smaller than the angular momentum
of the Earth.

There is one other way that the supervolcano could
change the length of the day. If it cannot change the
angular momentum of the Earth, it can change the
mass distribution of the Earth. If thematerial is ejected
from a high latitude and ends up at the equator (or
vice versa), then it will change the rotational inertia of
the Earth. In order to estimate an upper limit on this
effect, let’s move all of the mass ejected in the eruption
from the equator to the poles. At the equator that mass
contributes I = mr 2 to the rotational inertia. At the
poles that mass is on the axis of rotation so that r = 0
and it contributes nothing to the rotational inertia:

�I = mr 2 − 0 = m(rEarth)2

= (3 × 103 kg/m3)(104 m)3(6 × 106 m)2

= 1029 kg-m2.

Even with these extreme assumptions, this decreases
the rotational inertia of the Earth by less than one
part in 109. Thus, it would only increase the rotational
velocity of the Earth by less than one part in 109. This
would decrease the length of the day by less than

t = 105 s/day
109

= 10−4 s/day.

If the Yellowstone supervolcano erupted, we would
have more important problems to worry about than a
100-microsecond change in the length of the day.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The orbiting Moon 7.15
What is the angular momentum of the Moon
as it orbits around the Earth?

HINT:TheMoonrotatesaroundtheEarthonceamonth.

HINT:ThemassoftheMoonisMMoon=8×1022kg.

HINT:ThedistancefromtheEarthtotheMoonisabout
4×108m.

HINT:Thereare105secondsinaday.
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ANSWER: Because the radius of the Moon is much
smaller than the distance from the Earth to the Moon,
we can ignore its size. That means that its angular
momentum is L = mvr , so we need to estimate its
mass, speed, and distance from the Earth. We previ-
ously estimated the mass of the Moon as MMoon =
8× 1022 kg.* The distance from the Earth to the Moon
is rEM = 4 × 108 m. The Moon’s speed is the distance
traveled in one orbit divided by the time it takes, or

v = 2πrEM

t
,

where t = 1 month† = 30 × 105 s = 3 × 106 s.
Thus, the angular momentum of the Moon as it

orbits the Earth is

L = mvr = MMoonvrEM

= MMoon2πr 2EM
t

= (8 × 1022 kg)6(4 × 108 m)2

3 × 106 s
= 3 × 1034 kg-m2/ s.

This is several times larger than the Earth’s angular
momentum as it spins on its axis.

* Okay, Okay. We estimated its mass as 6 × 1022 kg. But let’s use
the correct value this time.

† No, we do not care whether the month is a sidereal month,
a lunar month, February, or December.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

The shortest day 7.16
The average Earth-Moon distance is slowly
increasing. This means that the Moon used to be
closer to the Earth. We estimated the shortest
distance that the Moon could be to the Earth
without being torn apart
by tides (Roche’s
Limit). What was
the length of
the day when
the Moon was
at Roche’s
Limit?

HINT:Thisisthemostcomplicatedprobleminthebook.

HINT:ThetotalangularmomentumoftheEarth-Moon
systemisconserved:LEarth+LMoon=constant.

HINT:TheclosertheMoonistotheEarth,thefasterit
orbits.Theorbitaltimeincreaseswithdistanceas
T2∝r3.

HINT:TheclosertheMoonistotheEarth,thesmallerits
angularmomentum.ThereforetheEarth’sangular
momentumwillbelarger.

HINT:ThegreatertheEarth’sangularmomentum,the
fasteritrotatesonitsaxisandtheshortertheday.
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ANSWER: The average distance from the Earth to
the Moon increases by about 4 cm each year. The
Earth’s tidal force would have converted the Moon
into a lovely set of rings if the Moon was ever closer
to the Earth than Roche’s Limit or rmin = 107 m.
For purposes of this question we’ll assume that the
Moon formed at this minimum distance and has been
moving away from the Earth ever since.

We want to estimate the length of the day when the
Moon orbited the Earth at Roche’s Limit. The total
angular momentum of the Earth plus the Moon is
conserved and does not change. Therefore, we need
to know the current angular momentum of the Earth
plus the Moon (which we have already estimated) and
the angular momentum of the Moon when it was
much closer to the Earth.*

Currently, we have

L total = LMoon + LEarth

= 3 × 1034 kg-m2/ s + 1034 kg-m2/ s

= 4 × 1034 kg-m2/ s,

so we need to estimate the angular momentum of the
Moon in the distant past.

Note that the Earth currently has one-quarter of
the total Earth-Moon angular momentum. At most
the Earth could have only four times more angular
momentum than today. This would give a “day” that
is four times shorter than today.

Today it takes the Moon one month to orbit the
Earth. When the Moon was closer to the Earth it took
less time.† As the angular momentum depends on
*We are ignoring the angular momentum of the Moon as it spins
(rotates) on its axis. Because its mass and radius are both much
smaller than the Earth’s, its rotational angular momentum must
be much, much smaller than the Earth’s.

† However, it would still have been called a “month.”
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both distance and time,

L = mvr = m(2πr/T )r = 2πmr 2

T
,

we need to determine the exact relationship between
the orbital distance r and the time period T . We can
determine this in a few ways. We might remember
Kepler’s Law, that the square of the orbital period is
proportional to the cube of the distance, T 2 ∝ r 3.
Alternatively, we might use the fact that the Earth’s
gravity provides the centripetal force to keep theMoon
in its orbit and then solve the physics equations. How-
ever, there is a much easier way to approximate the
answer.

The minimum Earth-Moon distance of rmin =
107 m is only two times larger than the distance to
satellites in low Earth orbit (LEO). This means that we
can use the radius (r = rE = 6 × 106 m) and time
period (T = 90minutes= 5×103 s) for these satellites
to approximate theMoon’s angular momentum at r =
107 m.* Thus,

Lmin
Moon = 2πmr 2

T
= 6 × (8 × 1022 kg) × (6 × 106 m)2

5 × 103 s
= 4 × 1033 kg-m2/s.

Therefore, if the Moon’s orbital distance decreases by
a factor of about seventy (from 4×108 m to 6×106 m),
its angular momentum decreases by a factor of about
seven. If we decrease the orbital distance by a factor
of “only” forty (to 107 m), then its angular momentum
will still decrease by a factor of five or six.
* If you don’t remember that satellites in low Earth orbit have a
period of 90 minutes, then you will need to go through the
longer derivation. I’m sorry.
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In this case,

Lmax
Earth = L total − Lmin

Moon

= 4 × 1034 kg-m2/s − 1
5
(3 × 1034 kg-m2/s)

= 3 × 1034 kg-m2/s,

so the Earth would have three times more angular
momentum than today. This means that the day was
three times shorter, or about 8 hours.

That was the easy method. Now let’s balance the
Earth’s gravity with the centripetal force to keep the
Moon in its orbit and then solve. If you remem-
bered the orbital period of LEO, feel free to skip this
section.

GMEarthMMoon

r 2
= MMoonv

2

r
,

where the Earth-Moon distance is r and the Moon’s
velocity v = 2πr/T so that

GMEarth

r 2
= 4π2r

T 2

T 2 = r 3 × 40
GMEarth

.

This is just Kepler’s Law, T 2 ∝ r 3 (for the special case
of circular orbits).

The angular momentum of the Moon around the
Earth is (from above)

LMoon = mvr = m2πr 2

T
.
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Using the fact that T ∝ r 3/2 and ignoring the factors
that do not change, we have

LMoon ∝ r 2

T

∝ r 2

r 3/2

∝ √
r .

When the Moon orbited the Earth at a distance of
only rmin = 107 m, the distance between them was
forty times smaller than it is today. This means that
LMoon ∝ √

r was
√
40 = 6 times smaller, or

Lmin
Moon = 3 × 1034 kg-m2/ s

6
= 5 × 1033 kg-m2/ s

and

Lmax
Earth = L total − Lmin

Moon

= 4 × 1034 kg-m2/ s − 5 × 1033 kg-m2/ s

= 4 × 1034 kg-m2/ s

= 4 × L today
Earth.

Thus, when the Moon was at Roche’s Limit, the
Earth’s angular momentum was four times greater
than it is today. Because LEarth = Iω, the rotational
speed of the Earth must have been four times greater,
so the Earth rotated four times in 24 hours.

In other words, when the Moon was at Roche’s
Limit, the day was only 6 hours long. If you worked an
8-hour day, then you had to start work 2 hours before
the end of the previous day.

The month was also much shorter. Because T ∝
(rEM)3/2, when the distance was forty times smaller,
T was three hundred times smaller. Instead of
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being 3 × 106 s, the month was only 104 s, or about
3 hours.*

The tides would have been particularly ferocious.
Tidal forces increase as (rEM)−3, so the tidal force
exerted on the Earth by the Moon would have been
(40)3 = 6 × 104 times larger. In addition, instead
of two tides every 24 hours, there would have been
two tides every 3 hours. Those would have really been
“tidal” waves.

The surfing must have been amazing!

* It is very unlikely that the Moon was ever this close to the Earth.
Today the day is shorter than the month. The Earth’s rotation
pushes the tidal bulge (the extra water at high tide) ahead of the
Moon. The bulge gravitationally attracts the Moon and speeds it
up. This extra energy moves the Moon slowly outward. If the day
were shorter than the month, the effect would be reversed, and
the Moon would be slowly pulled inward. But because the day is
now shorter than the month, it must always have been shorter.
Alas.
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Materials

Chapter 8
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



All materials are held together by the forces between
atoms. By understanding the scale of these forces and
the distances between atoms, we can understand the
macroscopic forces holding materials together.

The important numbers are the typical (and, I
hope, familiar) atomic binding energy of 1.5 eV and
the typical atomic size of 10−10 m.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Stronger than spider silk 8.1
What is the maximum strength of a material?
In other words, what is the
maximum weight that
a 1-cm cable or
rope could
possibly
support?

HINT:Anatomisabout10−10minsize.

HINT:Themaximumenergyreleasedinachemical
reactionisabout1.5eV.

HINT:Thatenergyistheforceexertedbyoneatomto
another,multipliedbythedistancetheotheratommoves:
E=Fd.

HINT:Howmanyatomsarethereinthecrosssectionofa
1-cmcable?
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ANSWER: When we pull on a rope, it stretches. The
distance between its atoms increases, and the atoms
pull back. The strength of the rope will be related to
the force each atom can exert and the number of atoms
in the rope.

In order to estimate the maximum strength of a
material, we need to estimate how hard each atom
can “pull back.” This is the maximum force exerted
by one atom on its neighbor, the force exerted by a
chemical bond. We already estimated the maximum
energy of a chemical bond to be about 1.5 electron
volts (1.5 eV) when we estimated the value of recycling
an aluminum can. We just need to relate energy to
force. Fortunately, we already looked at this back in
chapter 5. If a force F is applied over a distance d, then
it transfers energy (does work) of

E = F d.

The typical radius of an atom is 10−10 m.* If the
interatomic force is exerted over that distance, then we
have

Fatom = E
d

= 1.5 eV
10−10 m

= (1.5 eV)(1.6 × 10−19 J/eV)
10−10 m

= 2 × 10−9 J/m = 2 × 10−9 N.

That is much smaller than the 10−1 N we can detect.
However, compared with the mass of a typical atom,
m = 10−26 kg, it is enormous. Of course, both of those
comparisons are somewhat irrelevant.

Now that we know the force exerted by one atom,
we need to estimate the number of atoms in the rope.
Because the length of an ideal rope does not affect

* In fact, all atoms are about the same size. Even though their
number of electrons can vary by a factor of one hundred, their
radius only varies by a factor of a few.
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its strength, we just need to estimate the number of
atoms in a cross section of the rope. We simply need
to cut the rope at some point and count the number
of atoms. If we can count one atom per second, we
should be able to finish this before the Sun burns
out.

Okay, let’s try a different method. Let’s choose a
rope that is 1m thick, with a square cross section.
Although this is a rather thick rope with nasty corners,
it is a convenient size for calculations.We can trymore
manageable ropes later. Given that each atom has a
radius of r = 10−10 m, there are

n = 1m
2 × 10−10 m

= 5 × 109

atoms along one side of the rope. This gives a total of

N = (5 × 109)2 = 3 × 1019

atoms in a square-meter of rope.
The total force exerted by all those atoms will be

Ftot = NFatom
= (3 × 1019 atoms)(2 × 10−9 N/atom)
= 6 × 1010 N.

The tensile strength would then be

T = 6 × 1010 N/m2.

This is the maximum tensile strength of any possible
material. It assumes that all of the atoms are pulling
their hardest and that there are no defects or other
weaknesses in the material. For comparison, carbon
nanotube fiber has a maximum strength of about 1010
N/m2 (as of 2007 [29]) and steel piano wire has a
maximum strength of about 2 × 109 N/m2.*

* Note that the superstrong carbon fibers were only 1 mm long.
Longer fibers were much weaker. There is still a lot of work to be
done to make the ultimate rope.
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Now let’s consider the maximum load we could
hang from a 1-cm rope. The cross-sectional area of
the rope is A = (1 cm)2 = 10−4 m2, so the maximum
weight it could support would be

F = T A = (6 × 1010 N/m2)(10−4 m2) = 6 × 106 N,

or the weight of 6 × 105 kg or 600 tons. Imagine sup-
porting 600 tons from a 1-cm rope. For comparison,
1-cm (0.375-inch) of polyethylene or polypropylene
rope has a safe working load of only about 100 pounds,
or about 104 times less.*

Now that is strong!

* Yes, we are confusing maximum load with safe working load.
However, that is only a factor of three or so difference.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Beanstalk to orbit 8.2
One proposed method to lift people
and cargo into orbit is a beanstalk,
a very long cable stretching from
the Earth’s surface out past
geosynchronous orbit and orbiting
the Earth once a day so it stays
tethered over the same point. The
weight of the cable would be
counterbalanced by a large mass
located beyond geosynchronous
orbit. How strong would the
beanstalk cable have
to be to support
its own weight?
The answer
should be
in N/m2.

HINT:Wecanmodelthecableasjusthangingfrom
geosynchronousorbit.

HINT:Geosynchronousorbitisabout4×107mfromthe
centeroftheEarth.

HINT:Carbonnanotubeswillhaveadensityofaround
1ton/m3.

HINT:TheforceofEarth’sgravitydecreasesasF∝1/r2,
whereristhedistancetothecenteroftheEarth.
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ANSWER: Science fiction stories have long proposed
lifting people and cargo into orbit using a beanstalk,
a very long cable stretching from the Earth’s surface
out past the height of geosynchronous orbit and or-
biting the Earth once a day so it stays tethered over
the same point. The parts of the cable closer to the
Earth would try to orbit more quickly. They would be
counterbalanced by the parts that are further from the
Earth, which would try to orbit more slowly. Vehicles
could climb up the cable to the height of geosynchro-
nous orbit and then release their payloads into orbit.
This would replace all of the extremely inefficient and
rather terrifying rockets currently used to reach orbit.*

In effect, the beanstalk would “hang” from geosyn-
chronous orbit (GEO). The part closer to the Earth
would hang “down” and the part farther from the
Earth would hang “up.”† In order to estimate the
strength needed for the beanstalk cable, we need to
estimate the height of GEO, the mass of the cable, and
the weight of the cable.

Let’s start with GEO. We might remember that
GEO is 2.5 × 104 miles or 4 × 104 km from the center
of the Earth. If not, then we need to do some orbital
calculations. An object orbiting the Earth at GEO stays
over the same point on the ground, so it takes T = 1
day = 105 s for each orbit. This gives it a speed v =
2πr/T . The Earth’s gravity provides the centripetal
force needed to stay in orbit, so

GMEarthm
r 2GEO

= mv2

rGEO

GMEarth =
(
2πr
T

)2
r

* The payload of a modern rocket is only about 10−2 to 10−3 of its
mass. The rest is fuel and engine.

† So don’t try telephoning.
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rGEO =
(
T 2GMEarth

4π2

)1/3

=



(105 s)2(7 × 10−11 N-m2/ kg2)

(6 × 1024 kg)
40




1/3

= (1023 m3)1/3

= 108 m = 105 km.

This calculation would give the correct answer of 4 ×
104 km if we had used the exact length of the day
and done the arithmetic more precisely. On the other
hand, if we don’t remember the distance to GEO and
can’t be bothered to look it up, that’s definitely good
enough.

This means that we will need a cable that hangs
down for a length of

L = rGEO − rEarth = 4 × 104 km − 6 × 103 km

= 3 × 104 km.

That is a rather long cable. If it is 1-m thick, then it will
have a volume of

V = (1m)2(3 × 107 m) = 3 × 107 m3.

Let’s make the cable from relatively light carbon
nanotubes (rather than much heavier steel), so it will
have a mass of

m = ρV = (103 kg/m3)(3 × 107 m3) = 3 × 1010 kg.

If it was all subject to Earth’s full (i.e., surface) gravity,
then it would have a weight of

W = mg = (3 × 1010 kg)(10N/kg) = 3 × 1011 N,

giving a tensile stress (force per area) of 3×1011 N/m2.
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Uh oh. That is five times larger than the maximum
possible tensile strength of T = 6×1010 N/m2 that we
estimated in the preceding problem.

Fortunately, the cable will not weigh quite that
much, as the Earth’s gravitational force drops rapidly
with distance. At the surface (a distance of 6 × 106 m
from the center of the Earth), the Earth’s gravitational
field is g = 10 N/kg. At GEO, the distance is seven
times larger, so the gravitational field is 72 = 50 times
smaller or g = 0.2 N/kg. Taking the geometric mean,
we get an average gravitational field of

gavg = 10N/kg
7

= 1.5N/kg.

This reduces the total weight of the cable by a factor of
seven to

W = mgavg = (3 × 1010 kg)(1.5N/kg) = 5 × 1010 N,

giving a tensile stress (force per area) of 5×1010 N/m2,
which is very close to the maximum material tensile
strength.

Now all we need to do is to increase the strength of
really strong carbon nanofibers by a factor of six and
increase their length from 10−3 m to 4 × 107 m. Hey,
that’s only an increase of 1010 in length!

Note that this is one of the few problems in this
book that falls in the “Goldilocks” category of “just
right.” It will take far more effort and analysis to deter-
mine whether beanstalks might actually be possible.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Bolt failure 8.3
How easy is it to shear a 5

16 -inch screw?
I was repairing my dock and using an 8-inch
wrench to tighten a very stubborn 5

16 -inch lag
screw. I sheared the head of the screw off.
Was I unexpectedly strong, was the screw
unexpectedly weak,
or was this to be
expected?

HINT:Thetensilestrengthofsteelis4×108N/m2.

HINT:Howmuchforcecanyouapplytoawrench?1lb=
5N.

HINT:Whatisthecross-sectionalareaofthescrew?

HINT:Theforceiseffectivelymultipliedbythemoment
arm,thedistanceoverwhichitisapplied.Whatisthe
ratioofthemomentarmsoftheforceappliedbythe
wrenchandbythescrew?
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ANSWER: We apply torque to the head of the screw
by applying a force at or near the end of the wrench.
This torque is opposed by friction between the screw
threads and the material it is screwed into. The
torque is transmitted along the screw by the body
of the screw. Let’s model the screw at the location
where it sheared as two disks in contact with each
other on a common axis. The two disks are held to-
gether by the strength of the molecular bonds between
them.

Torque equals force times the distance (moment
or lever arm) over which it is applied. The longer the
wrench, the greater the torque we can apply.

In this case, we are using an 8-inch wrench, so the
moment arm for our force is 8 inches (20 cm). The
moment arm for the force applied by the screw (i.e.,
by one disk on the other) is the screw radius. The
screw diameter at the shank is 5

16 inch, so the radius is5
32 inch = 125/32mm = 4mm. We can apply a force
of about 100 pounds. Because the ratio of moment
arms is (20 cm)/(4mm) = 50, the effective force
between the two disks is about 50 × 100 pounds =
5, 000 pounds, or 3 × 104 N.

This force is applied over an area of

A = πr 2 = 4(4mm)2 = 60mm2 = 6 × 10−5 m2.

(Note that we want the area weighted by the moment
arm [the distance from the axis], not the area times the
moment arm. This will decrease the effective area by a
factor of a few). Thus the stress (force per area) is

S = 3 × 104 N
6 × 10−5 m2 = 5 × 108 N/m2.

While this is one hundred times smaller than the
maximummaterial strength we estimated in an earlier
question, it is only two times smaller than the strength
of steel piano wire.
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According to the manufacturer, the tensile strength
of lag screw steel is 60,000 psi (4 × 103atm = 4 ×
108N/m2). Thus, I applied a force greater than the
screw strength. It is not surprising that the screw
sheared.

For the next screw, I drilled a pilot hole first.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Making mountains out of molecules 8.4
The Himalayas are rising as India collides with Asia.
How much taller can they get? What is the
maximum height of a mountain on the Earth?
On Mars?

HINT:Whenthemountainistootall,itsinksalittle,
transferringenergyfromgravitationalpotentialenergyto
makingtherockatthebottomflow.

HINT:Consideracylindricalmountain.

HINT:Theenergyrequiredtomeltrockisaboutone-tenth
oftheenergyofatypicalmolecularbond.

HINT:Theenergyofatypicalmolecularbondis1.5eV.
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ANSWER: The tallest mountain on the Earth is Mt.
Everest, at an elevation of about 3 × 104 ft, or 104m.

It is part of the Himalayas, which are rising as India
collides with Asia. Can Mt. Everest get much taller?
What is the limit for terrestrial mountains?

When the weight of the mountain becomes too
great to be supported by the Earth’s crust, the bottom
layer of rockwill flow, and themountain will sink. This
process is governed by energy. Lowering themountain
releases gravitational energy. The taller the mountain,
the greater the gravitational energy released. Making
rock flow (i.e., turning it from solid to liquid) re-
quires energy. The mountain is at its maximum height
when the gravitational energy released by lowering
the mountain is barely less than the energy needed to
make the rock flow.

This means that we need to estimate the gravita-
tional energy released and the energy needed to make
the rock flow. Rock is generallymade of silicon dioxide
molecules, SiO2, with a molecular weight of about 60
g/mole = 0.06 kg/mole. Thus the mass of one SiO2
molecule is m = W/NA = (0.06 kg/mole)/(6 × 1023
molecules/mole) = 1 × 10−25 kg.

The silicon and oxygen in each SiO2 molecule is
tightly bound, presumably with the typical molecular
binding energy of 1.5 eV. However, the energy needed
to rearrange solid SiO2 should be much less. We
will estimate that it is about ten times less, or 0.15
eV/molecule. For a more detailed discussion of the
physics involved, see [30].

Now let’s consider a one-molecule-wide column of
rock that is the height of the mountain, h. If the entire
column sinks by one molecule, that is equivalent to
lowering one molecule a distance h from the top to
the bottom of the column. The gravitational energy
released by that is

P E = mgh,
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where m is the mass of one SiO2 molecule. In order
to do this, one molecule of SiO2 must move out of the
way (flow) at an energy cost of 0.15 eV. The mountain
is at its highest when

mgh = 0.15 eV

h = 0.15 eV
mg

= (0.15 eV)(1.6 × 10−19 J/eV)
(10N/kg)(10−25 kg)

= 2 × 104 m.

This is about twice the current height of Mt. Everest.
Given the uncertainty of our result, all we can really
say is that Mt. Everest will not get ten times higher.

As this result is inversely proportional to the
strength of gravity at the surface, mountains on the
Moon can be six times taller and mountains on Mars
can be a few times taller. This is consistent with the
height of Olympus Mons, which is 22 km tall.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Chopping down a tree 8.5
How many bullets does it
take to cut down a tree?

HINT:Ittakesenergytobreakthechemicalbondsthat
holdtheatomsofthetreetogether.

HINT:Thebulletshavekineticenergy.
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ANSWER: When a bullet breaks things, it converts
its kinetic energy into chemical energy by breaking
the bonds that hold the atoms together. When we
chop down a tree, by whatever means (e.g., using axes,
bullets, chainsaws, or herrings), we concentrate our
efforts on a thin slice of the tree. In order to figure
out how many bullets it will take to cut down a tree,
we need to estimate the kinetic energy of each bullet
as well as the chemical energy of that slice of tree.

Let’s choose a tree larger than a sapling and smaller
than a redwood, with a radius of 20 cm (8 inches or
one hand-span). Why choose 20 cm? Because it is a
nice round number and because that is a substantial
tree. Let’s also assume really good marksmanship so
that the bullets will remove a thin slice of tree that is
only about 2 cm tall (about 1 inch) for a total removed
volume of

V = πr 2h = 3(20 cm)2(2 cm) = 2 × 103 cm3.

At a density of ρ = 1 g/cm3, that gives a mass of
m = ρV = 2 kg.

The energy needed to break the atomic bonds in
that 2-kg slice is about the same as the energy gained
by rearranging the atomic bonds in 2-kg of gasoline.
At 4 × 107 J/kg (see chapter 3 for more details), this
gives a total energy needed to break the bonds of E =
8 × 107 J.

Now we need to estimate the kinetic energy of a
bullet. A typical lead bullet is around 1 cm in diameter
and 2 cm long.* This gives a mass of

mb = ρV = (10 g/cm3)(2 cm3) = 20 g = 2 × 10−2 kg.

* Modern bullets range in size from .22-caliber/5.56 mm to
.50-caliber/12.7 mm in diameter. They range in mass from 4 to
50 g.
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At a muzzle velocity of 103 m/s, the kinetic energy per
bullet is

K Eb = 1
2
mbv

2 = 0.5(2 × 10−2 kg)(103 m/s)2 = 104 J.

In order to cut down a tree, we would then need

N = E
K Eb

= 8 × 107 J
104 J

= 104 bullets.

This assumes that we need to break every single atomic
bond in that slice of tree and that the bullets are 100%
efficient at using their kinetic energy to break bonds.
Fortunately, these rather unrealistic assumptions tend
to cancel each other.

The Mythbusters chopped down a somewhat
smaller pine tree using a minigun that fired 0.30-
caliber/7.62mm bullets at a rate of fifty per second. It
took them 45 seconds or about 2 × 103 bullets [31].

309





Radiation

Chapter 9
¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿



Radiation is all around us, yet it is mysterious and
scary to many people. As one of my students said,
“If it’s natural, how can it be bad for you?” In this
chapter we will estimate some common, uncommon,
and extremely uncommon radioactive phenomena.

First, we need to introduce some concepts. “Radi-
ation” consists of high-speed, high-energy particles.
They can cause damage when they interact in material
(such as our bodies). There are many sources of radia-
tion, both natural and man-made. “Radioactive mate-
rials” emit radiation. Nuclear reactors emit radiation.
The Sun, supernovas, and other cosmic sources emit
radiation that are called cosmic rays when they hit the
Earth. About one cosmic ray passes through your hand
every second.

These high-energy particles can be charged or neu-
tral. When charged particles pass through matter, they
deposit energy by jiggling* the atomic electrons. For
every centimeter of water they pass through, they
deposit 2MeV (2 × 106 electron volts) of energy (or
20MeV per cm of iron or lead). When they run out of
energy, they stop.

When neutral particles pass through matter, they
only deposit energy when they interact with the atomic
nuclei. The probability of this interaction is called the
cross section and is measured in units of area.† In
order to find the probability of interaction in a certain
amount of matter, we multiply the cross section times
the density of protons and neutrons. For example, the
reactor neutrino cross section‡ was first measured in

* That’s a technical term.
† A very large unit of cross section is the barn, which is equal to
10−24 cm2. I like to think that it refers to being able to hit the
broad side of a barn.

‡ This only applies to neutrinos with energy from radioactive decay
with energy from keV toMeV. Cross sections for higher energy
neutrinos are much larger.
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1956 [32] to be

σ = 6 × 10−44 cm2 = 6 × 10−48 m2.

Because the mass of one proton or neutron is m =
(1 g/mole)/(6 × 1023 mole−1) = 2 × 10−27 kg, the
number density of protons and neutrons in water is

n = ρ

m
= 103 kg/m3

2 × 10−27 kg
= 6 × 1029/m3.

This means that the typical distance that a neutrino
can travel (its mean free path) through water before
interacting is

d = 1
nσ

= 1
(6 × 1029 m−3)(6 × 10−48 m2)

= 1
(4 × 10−18 m−1)

= 3 × 1017 m.

This is a rather long distance. Traveling at the speed of
light, c = 3 × 108 m/s, it would take 109 s, or 30 years
(at π × 107 s/yr), to travel that far. In other words, the
interaction distance of neutrinos in water is 30 light-
years. The interaction distance in lead, as it is ten times
denser, is a mere 3 light-years.

No wonder it took physicists twenty years to detect
the neutrino after it was predicted.

Neutrinos are emitted in fusion reactions by the
Sun and in fission reactions by nuclear reactors. For
every four hydrogen nuclei that the Sun fuses into
one helium nucleus, the Sun gains about 30MeV of
energy and emits two neutrinos (as two of the protons
are converted to neutrons). For every uranium-235
nucleus that fissions (splits into two smaller nuclei),
the reactor gains about 200MeV of energy, and the
daughter nuclei release several neutrinos (and other
particles) as they decay further.
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Radiation damages our bodies by breaking chemi-
cal bonds. We measure the radiation dose in “grays,”
where

1Gy = 1 J/kg

measures the energy deposited in our bodies by
the radiation.* Neutrinos deposit about 1MeV when
they interact. Very high-energy (E � 1MeV) charged
particles deposit 2MeV for every cm of tissue they
pass through. Acute (as opposed to chronic) radiation
poisoning starts at a single dose of about 0.7Gy. A
dose of 10 Gy is almost always lethal.† Radiation doses
are typically reported in sieverts rather than grays to
account for the different toxicity posed by different
types of radiation.

* An older unit is the rad where 1 rad = 0.01 J/kg of deposited
energy.

† This refers to whole body irradiation by penetrating radiation,
with the entire dose acquired in a short period of time. For more
information, see the Centers for Disease Control [33].

314 Chapter 9 Radiation



¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Nuclear neutrinos 9.1
How many neutrinos from our local nuclear
power plant pass through our bodies?

HINT:Abignuclearpowerplantconsumesabout3GWof
thermalpowertoproduceabout1GWofelectricalpower.

HINT:Eachnuclearfissionproduces200MeVofenergy
andseveralneutrinos.

HINT:Ifwelive100kmfromthepowerplant,those
neutrinoswillbeevenlydistributedoverasphereofradius
100km.

HINT:Ourcross-sectionalarea,aswefacethenuclear
plant,isabout1m2.
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ANSWER: Nuclear power plants produce lots of en-
ergy by fissioning lots of uranium nuclei. As those
nuclei fission, they each release about 200MeV of en-
ergy and several neutrinos.* A typical big, commercial
nuclear power plant produces about 1 GWof electrical
power by consuming about 3 GWof thermal power. In
order to produce 3 GW, the power plant has to fission
a lot of uranium:

N = (3 × 109 W)(6 × 1018 eV/J)
(2 × 108 eV/uranium)

= 2 × 1020 uranium/s,

where we convert from eV to joules and use the fact
that a watt is a joule per second. That is a lot of
uranium nuclei, but it is 3 × 103 times smaller than a
mole.† At several neutrinos per fission, there are about
1021 neutrinos released every second.

Now we need to estimate the distance from us to
the nearest nuclear power plant. There are about one
hundred nuclear power plants in the United States, so
it is very likely that we are less than 103 km and more
than 10 km from the nearest one, giving a geometric
mean of 100 km. If your distance is different, feel free
to use it.

Then the 1021 neutrinos per second will be evenly
distributed over the surface of a 100-km sphere with
area

A = 4πr 2 = 12 × (105 m)2 = 1011 m2,

* The exact number of neutrinos will depend on which daughter
nuclei the uranium splits into and how those daughter nuclei
decay.

† That means that in one year, or 3 × 107 s, a power plant will
consume 104 moles of uranium. At 0.2 kg/mole, that is 2 tons.
That is not much material to power an entire nuclear plant for a
year.
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so the neutrino flux will be

fν = 1021ν/s
1011 m2 = 1010ν/s · m2.

Our surface area will depend on our orientation. If
we lie down with our feet pointing at the plant then
we will minimize our surface area but maximize the
distance that each neutrino passes through us. Let’s
instead face the power plant squarely. In that case our
frontal area is about 2m by 0.5m, giving an area of
A = 1m2.

This means that every second, 1010 neutrinos pass
through each of our bodies. If we live ten times closer,
then there are 1012 neutrinos per second, and if we
live ten times farther away, then there are a mere 108
neutrinos per second. No matter what, that’s a lot of
neutrinos.

Fortunately, they do not interact much.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Neutrinos and you 9.2
How many of the neutrinos from our local nuclear
power plant interact in our bodies?

HINT:Weestimatedtheneutrinofluxintheprevious
questionas1010νpersecondpersquaremeter.

HINT:Whatisouraveragethickness?

HINT:Howdoesthatcompareto30light-yearsofwater?

HINT:Whatisouraveragedensity?
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ANSWER: About 1010 neutrinos pass through our
bodies every second. However, as we showed earlier,
a neutrino can travel through about 30 light-years
of water before interacting. This means that we need
to estimate our thickness, or at least our physical
thickness.*

Assuming that we are facing the power plant
squarely, then our area is about 1 m2. We can estimate
our thickness in a few ways. It is definitely more than
1 cm and less than 100 cm, giving a geometric mean
of 10 cm. Or we can measure our thickness in a few
places and take the average. However, there is a more
reliable method. We have about the same density as
water. Assuming for ease of calculation that our mass
is 100 kg, this means that our volume is

V = m
ρ

= 100 kg
103 kg/m3 = 0.1m3.

This will be equal to our area times our average thick-
ness, V = At. If our area is 1m2, then our average
thickness is 0.1m. Note that if we turn sideways so
that our area exposed to the neutrinos halves to 0.5m2,
then our thickness doubles to 0.2m.

The probability that any one neutrino interacts in
our body is the ratio of our thickness and the neutrino
interaction length:

P = t
d

= 0.1m
3 × 1017 m

= 3 × 10−19.

Note that if we orient ourselves feet first to the power
plant, then fewer neutrinos will pass through our bod-
ies, but they will each pass through a greater thickness.
The number of neutrinos passing through is propor-
tional to our area, and the interaction probability is
proportional to our thickness, so the total number
interacting is proportional to our volume (area times
*My mental thickness cannot be measured in meters.
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thickness). This is why modern neutrino detectors are
measured in kilotons rather than in area and thickness.

The total number of neutrinos passing through our
bodies in our lifetimes is

N = (1010ν/s)(π × 107 s/yr)(102 yr) = 3 × 1019.

This means that the total number of neutrinos inter-
acting in our bodies in our lifetimes is

I = NP = (3 × 10−19)(3 × 1019) = 10,

or about one every ten years.
This must be why those decadal birthdays (30, 40,

50, . . .) are so painful.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Solar neutrinos 9.3
How many neutrinos from the Sun pass
through our bodies every second?
How many interact?

HINT:Thesolarenergyfluxisabout103W/m2-satEarth
orbit.

HINT:Foreveryfourhydrogennucleiconvertedinto
helium,theSunreleasestwoneutrinosand30MeVof
energy.
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ANSWER: The Sun produces a lot of energy and a
lot of neutrinos. It is also very far away. In order
to estimate the number of solar neutrinos passing
through our bodies we need to estimate both the total
neutrino output and the area over which they are
distributed.

Let’s start with the neutrino output. As the Sun
fuses four hydrogen nuclei into one helium nucleus,
it transforms about 30MeV from mass energy (the
binding energy of 4He) into thermal energy, and it
releases two neutrinos.* This means that we need to
know the power output of the Sun. Astronomers (or
readers of Guesstimation) might remember that the
power output of the Sun is 4×1026 W. Astrophysicists
might be able to calculate it from the solar surface
area and temperature (about 5 × 103 K). We’ll just
use the solar constant at Earth orbit of 103 W/m2 =
103 J/s ·m2. This means that the neutrino flux at Earth
orbit is

fν = solar power
area

× neutrino
energy

= (103 J/s·m2) × (6 × 1018 eV/J) × 2 neutrino
30 × 106 eV

= 4 × 1014 neutrino/s·m2.

Thus, when we are lying down and sunbathing at high
noon or standing up and facing the setting Sun, there
are 4 × 1014 neutrinos per second passing through
our bodies. This is 4 × 104 more than from that local
nuclear power plant.

The probability of a single neutrino interacting in
our bodies will be about the same for solar neutrinos

* The first step in the reaction chain is to fuse two hydrogen nuclei
(protons) into a heavy hydrogen nucleus p + p → 2H + e+ + ν,
where the heavy hydrogen (deuterium) nucleus contains a proton
and a neutron.
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as for power plant neutrinos. Because 4 × 104 times
more solar neutrinos than nuclear plant neutrinos pass
through our bodies, there will be 4 × 104 times more
solar neutrino interactions. Instead of one every ten
years, there will 4 × 103 per year or about ten per day.

Ouch!

325





¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Supernovas can be dangerous 9.4
If the Sun went supernova, what
would kill us (first)?

HINT:Thesupernovaispoweredbytheenergyreleased
bythegravitationalcollapseofthestar.

HINT:Weestimatedthatenergyreleaseinthe
“CollapsingSun”question.

HINT:Theneutrinosarrivefirst.

HINT:99%oftheenergyisreleasedintheformof
neutrinos.

HINT:Anexposureof10J/kgofenergydepositedinour
bodiesbyradiationislethal.

HINT:Eachneutrinohasabout1MeVofenergy.
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ANSWER: It is generally not a good idea to stand
too close to a supernova. A literally cosmic amount
of energy is released in the form of outgoing parti-
cles, including neutrinos, photons (light), and regular
matter. In a terrestrial explosion, the blast of photons
is called the “flash,” and the blast of regular matter
is called the shock wave.* For some reason we do
not have a common expression referring to the blast
of neutrinos. However, unlike terrestrial explosions,
supernovas release 99% of their energy in the form of
neutrinos.

First let’s consider the speeds and arrival times of
the different particles. The regular matter is clearly the
slowest, as it travels slower than the speed of light. The
photons and neutrinos both travel at about the speed
of light.† The neutrinos travel directly away from
their production point until they interact somewhere
else. However, the star is opaque, so the photons are
repeatedly absorbed and reemitted by the stellar ma-
terial until they finally reach the surface. This means
that the neutrinos arrive first. In fact, for supernova SN
1987A, a pulse of about twenty neutrinos was detected
about 3 hours before the first photons arrived (i.e.,
before the star got measurably brighter).

Given that the neutrinos arrive first, let’s estimate
that radiation dose. In order to do this, we need to
estimate the number of neutrinos emitted, the number
passing through our bodies, the number interacting
in our bodies, and the energy deposited by those
interacting neutrinos. Let’s get started.

As we estimated back in the “Collapsing Sun” ques-
tion, the energy released by gravitational collapse of
* On the Earth, the shock wave is actually an atmospheric pressure
wave.

† Neutrinos do have a tiny mass and so travel a tiny bit slower than
the speed of light. However, that difference is negligible, even
over distances of light-years.
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our Sun would be 1046 J. A star that could supernova
would be several times larger than our Sun and so
would release several times more energy.* The vast
majority of that energy will be carried away by the
neutrinos. These neutrinos come from the radioactive
decay of unstable elements created during the stellar
collapse and hence will have about the same energies
(about 1MeV) as the neutrinos from power plants (at
least within a factor of ten). Thus, we can calculate the
number of neutrinos emitted as

Nν = energy released
energy per neutrino

= (1046 J)(6 × 1018 eV/J)
106 eV/ν

= 6 × 1058ν,

which is a really, really big number compared with
pretty much anything.

The number of neutrinos passing through our
bodies on the Earth at a distance of r = 1AU =
1.5 × 1011 m from the supernova will be proportional
to the area of our bodies divided by the area of a sphere
of radius r = 1 AU:

Nbody
ν = Nν × body area

1 AU sphere surface area

= 6 × 1058ν × 1m2

4π(1.5 × 1011 m)2

= 2 × 1035ν

will pass through our bodies as we watch the super-
nova.

We already estimated the probability of a single
neutrino interacting in our body in an earlier question
* No. Our Sun is not large enough to supernova. Now we can sleep
quietly tonight.
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to be

P = t
d

= 0.1m
3 × 1017 m

= 3 × 10−18,

where t is our thickness and d is the neutrino interac-
tion length.

Thus, the total number of neutrinos interacting in
our bodies will be

N interact
ν = Nν P = (2 × 1035)(3 × 10−18)

= 6 × 1017,

and each interaction will transfer up to 1MeV of
energy. Let’s estimate that the average interaction
transfers one-tenth of the maximum, or Einteract =
0.1MeV. Then the total energy deposited in our bod-
ies by the neutrinos is

E = N interact
ν E interact = (6 × 1017)(0.1MeV)

= (6 × 1022 eV)(1.6 × 10−19 J/eV)

= 104 J.

Assuming we have a mass of 100 kg, this corre-
sponds to an energy deposited per kilogram (and
hence radiation dose) of

e = 104 J
100 kg

= 102 J/kg = 102 Gy,

which is ten times the lethal dose. Death by neutrino!
Supernovas can be beautiful, but don’t get too close.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Reviving ancient bacteria 9.5
A biologist recently
claimed to have
revived a 30 million-
year-old bacterium.
How many cosmic
rays would have passed
through that bacterium
during that time? What is
the probability that its DNA
was scrambled?

HINT:Onecosmicraypassesthroughourhandevery
second.

HINT:Bacteriaareabout10−6minsize.

HINT:Acosmicrayisahigh-energy,high-velocity,
chargedparticle.IfithitstheDNA,itwilldamageit.
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ANSWER: In order to determine whether a cosmic ray
hit the DNA of an ancient bacterium, we need to know
the cosmic ray flux and the size of the bacterium’s
DNA.

We are continually bombarded by cosmic rays.
About one cosmic ray passes through a hand every
second. Because a hand is about 4 inches (10 cm = 0.1
m) by 4 inches, that gives a rate of 102 cosmic rays per
square-meter per second.* Cosmic rays damage mole-
cules close to their path by “wiggling” their electrons.†

Now let’s estimate the size of a bacterium. The
smallest object we can easily see is about 0.1mm
(10−4 m) in size. Knowing that Leeuwenhoek saw “an-
imacules” with his primitive microscope implies that
cells are about 10−5 m. Bacteria are smaller than these,
so their size is about 10−6 m, or 1 µm.

DNA provides the genetic information to direct the
functioning of the cell. Let’s estimate its size. Size, of
course, is a very vague term. What we really want is
the probability that, if a cosmic ray hits a cell, it hits the
DNA within the cell. That means we want to estimate
the cross-sectional area of the DNA. Some cells have
nuclei containing their genetic material. This makes it
easier to visualize the problem. The diameter of these
nuclei are about 20% of the cell diameter (more than
10% and less than 50%, based on vague memories
of high school biology classes). That implies that the
cross-sectional area of the nucleus (and hence of the
DNA) is (20%)2 ≈ 4 × 10−2 of the cell area.

* Yes, I know a hand is larger than that. However this gives a nice,
round number and is actually more accurate than using the
correct hand size.

† “Wiggle” is a technical term. In laymen’s terms, high-velocity
charged particles passing through matter interact with the
atomic electrons through electromagnetic forces, supplying
enough energy to break molecular bonds.
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Unfortunately, bacteria do not have nuclei. How-
ever, we can estimate the amount of DNA in the cell
by bounding it. The proportion of the cell devoted
to its genetic information, the DNA volume, must be
less than 100 (100%) and more than 10−4 of the cell
volume, giving an estimate of 10−2. If the DNA takes
up 10−2 of the cell’s volume, then it must take up a
bit more of the cell’s cross-sectional area. Thus, this
is consistent with the 4 × 10−2 of the area that we
estimated for cells with nuclei.

Therefore we will use an effective DNA cross-
sectional area of

A = (4 × 10−2) × (10−6 m)2 = 4 × 10−14 m2.

At a cosmic ray rate of 102 per square-meter per
second, that gives

n = RcosmicAnucleus =
(
102

rays
m2s

)
(4 × 10−14 m2)

= 4 × 10−12 rays/s

passing through the DNA of the bacterium. This is not
a lot of cosmic rays, but the bacterium has been around
for a very long time.

In 30 million (3× 107) years, the number of cosmic
rays passing through the DNA is

N = nt = (4 × 10−12 rays/s)(3 × 107 yr)

×(π × 107 s/yr) = 4 × 103 rays,

or four thousand cosmic rays. This means that there
will be about four thousand broken chemical bonds in
the bacterium’s DNA.

Reviving any single bacterium is very, very unlikely.
It will be much easier to reconstruct the undamaged
DNA piece-by-piece from a sample of many bacteria.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Decaying protons 9.6
Some theories predict that protons are unstable
and eventually decay into less massive particles,
releasing radiation. Given that radiation from
proton decay does not kill
us, what is the minimum
possible proton
lifetime?

HINT:Protonsmakeup40%to100%ofallnormal
matter(byweight).

HINT:Eachprotondecaywoulddepositareasonable
fractionofitsmassenergy,Em=mc2=1GeV,inour
bodies.

HINT:Iftheprotonlifetimeisnseconds,then1/nofthe
protonswilldecayeachsecond.
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ANSWER: In order to estimate the minimum possible
proton lifetime, we should start with our maximum
long-term radiation dose and then calculate the num-
ber of proton decays that would cause this, followed by
the corresponding proton lifetime.

An acute radiation dose of 10 gray will kill us. An
acute radiation dose of 1 gray will make us sick. We
can presumably recover from that radiation sickness
in under a year. This means that we should be able
to absorb 1 gray each year. Although this will signif-
icantly increase our cancer risk, that is a longer-term
problem. If we want to be more conservative, we can
reduce all doses by a factor of ten, which will increase
the corresponding proton lifetime by a factor of ten. A
dose of 1 gray/year corresponds to energy deposited in
our bodies of 1 J/kg-yr.

Let’s only consider protons decaying in our bodies.
Let’s further assume that these protons deposit all of
their mass energy in our bodies. This is reasonable
because some of the radiation from protons decaying
outside our bodies will deposit energy in our bodies,
and some of the radiation from protons decaying in-
side our bodies will deposit energy outside our bodies.

Under these assumptions, the total mass energy of
all the protons decaying in each kilogram of our body
each year must be less than 1 joule. Because E = mc2,
we have

m = E
c2

= 1 J
(3 × 108 m/s)2

= 10−17 kg.

This means that in every kilogram, at most 10−17 kg
of protons can decay each year.

Thus, the lifetime of a proton must be greater than
1017 years.* That is 10 million times the age of the
universe. Even based on just our fragile bodies, the
proton must be a remarkably stable particle.
* The current lower limit on proton lifetime from sophisticated
experiments is now about 1026 years.
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¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿

Journey to the center of the galaxy 9.7
If we travel by starship to the center of the galaxy, such
that we arrive within a subjective human lifespan, how
much radiation damage will we suffer from the
interstellar “vacuum” (i.e., from the atoms in
interstellar space)? Assume that Special Relativity holds,
and ignore the problems of accelerating
and decelerating the spacecraft.

HINT:Theinterstellarvacuumcontainsaboutone
hydrogenatompercubiccentimeter.

HINT:Thesolarsystemisabout3×104light-yearsfrom
thecenterofthegalaxy.

HINT:Travelingclosetothespeedoflight,oursubjective
timewillpassmoreslowlybytherelativisticfactorγ.Each
hydrogenatomwepassthroughwillthenappeartohave
totalenergyofE=mc2γasithitsus.

HINT:Eachofthosehydrogenatomswillthendeposit
energyinourbodiesinthesamemannerasacosmicray,
depositing2MeVforeachcentimeteroftissueitpasses
through.
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ANSWER: In order to estimate our radiation damage
from space travel, we need to estimate the number of
atoms in our path and the damage done to us by each
atom.

In order to estimate the number of atoms in our
path, we need to estimate the distance traveled and
the density of atoms. We might remember that the
distance is about 10 kiloparsecs, or about 3 × 104
light-years. Alternatively, we might know that there
are about 1011 stars in our galaxy and it is about 4
light-years (ly) to the nearest star. In that case, each
star occupies a volume of about

V = (4 ly)3 = 200 ly3,

so the total volume of the galaxy is V = 1013 ly3. The
galaxy is relatively flat, so it could have a radius of
105 ly and a thickness of 103 ly. That would place the
solar system about d = 5 × 104 ly from the center.

Converting to meters, this means that the distance
traveled is

d = 3 × 104 ly = (3×104)(3 × 108 m/s)(π × 107s)

= 3 × 1020 m.

The typical density of interstellar space is one atom
per cubic centimeter, primarily hydrogen. By com-
parison, room air has a density of n = (6 × 1023
atoms)/(2 × 104 cm3) = 3 × 1019 atoms/cm3. If we
consider a longitudinal slice of the spacecraft with
surface area A = 1 cm2, it will encounter 3 × 1022
atoms on its journey.

In order to travel this distance within a subjective
human lifetime, our spacecraft must achieve a speed
very close to the speed of light. Even traveling at the
speed of light, if there is no relativistic time dilation,
our trip will take 3×104 years, which is slightly longer
than our expected lifetime. Fortunately, at speeds close
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to the speed of light, subjective time passes more
slowly than it does for an observer watching from the
center of the galaxy. We need time to pass about 103
times more slowly. In technical terms, this means we
need a relativistic gamma factor of about γ = 103.
This means that, from our point of view (i.e., in our
reference frame) each interstellar atom will hit us
traveling at almost the speed of light with the same
gamma factor and will thus have a total energy of

E = γmc2 = 103 × (1GeV) = 1 TeV.

At these energies, when the hydrogen atom strikes
the spacecraft, it will lose its electron very quickly.
The bare proton will then pass easily through the
spacecraft and our bodies, depositing energy in our
bodies at a rate of 2MeV per centimeter.*

Now we can consider the damage done by all these
protons. Consider a volume of 1 cm3 within our
bodies. At the density of water it has a mass of 1 g.
It will be hit by 3 × 1022 protons, with each proton
depositing 2MeV of energy. This means that the total
energy deposited per gram will be

Edep = (3 × 1022 protons/cm2)(2 × 106 eV/cm)

×(1 cm3/g)

= (6 × 1028 eV/g)(1.6 × 10−19 J/eV)

= 1010 J/g = 1013 J/kg.

This seems like a lot, but let’s compare it with a few
things before jumping to conclusions.

As it only takes 2×106 J/kg to boil water, we would
be vaporized more than 106 times over. In a thirty-
year journey lasting 109 s, we would be turned to steam
within the first 103 s, or 20 minutes.

* These protons can pass through about 1 km of metal before
stopping. We can’t stop them with mass shielding.

339



Unfortunately, we would not even survive that
long. Radiation dose is measured in grays, where 1 Gy
corresponds to an energy deposition of 1 J/kg. A lethal
dose of radiation is about 10 Gy or about 10 J/kg. We
will accumulate that dose in 10−12 of our journey, or
in the first millisecond.

Who knew that vacuum could be so dangerous?
I don’t know about you, but I’m staying home.

Especial thanks to Dr. William Edelstein of the
Johns Hopkins University School of Medicine for
suggesting the idea and giving me permission to use
it. See http://www.newscientist.com/article/dn18532-
starship-pilots-speed-kills-especially-warp-
speed.html for more details.
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Appendix A
Dealing with Large Numbers

A.1 Large Numbers

We use scientific notation to write any number as a
number between 1 and 9.99 (the coefficient) times 10
raised to some power (the exponent). Thus, we write
3 trillion as 3 × 1012 rather than as 30000000000000
(three followed by twelve zeros). Numbers with the
decimal place on the right have positive exponents,
and numbers with the decimal place on the left have
negative exponents. For example,

0.0006 = 6 × 10−4

0.2 = 2 × 10−1

3 = 3 × 100
2,000 = 2 × 103

54,321,000 = 5.4321 × 107

This has several advantages. First, as a professional
scientist, I have lost the ability to count. It is much
easier for me to write 1012 than to try to keep track of
so many zeros.* We could ask a first-grader to count
the zeros for us, but first-graders are not always avail-
able. Second, it reduces the likelihood of transcription
errors. One of my students botched a problem because
he misplaced a decimal point and wrote 11459.2 as
114592. If he had written 1.14592 × 104, it would
have been much harder to make that mistake. Third,
it draws more attention to the exponent, the most
important part of any number. There is a much bigger
difference between 3 × 103 and 3 × 104 than between
3 × 103 and 4 × 103.
* As you might have noticed in the first paragraph.
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Because we will be estimating, we will rarely (if
ever), use more than one digit. Thus, we will round off
1.14592×104 to 1×104. This will make the arithmetic
much easier. As discussed below, it will also avoid
lying about (that is, drastically overestimating) how
well we know the answer.

Now on to the arithmetic.When we add or subtract
numbers, we adjust the smaller number so that it has
the same exponent as the larger one. To do this, we
shift the coefficient of the smaller number by one
decimal place for each change in the exponent. For
example, when we add 5×106 and 3×104, we increase
the exponent of the smaller number by two and shift
the coefficient by two decimal places so that 3× 104 =
0.03 × 106. (This is the same as writing 30 thousand
(30,000) as 0.03 million.) Once the exponents are the
same, we add or subtract the coefficients normally:

5 × 106 + 3 × 104 = 5 × 106 + 0.03 × 106

= 5.03 × 106

= 5 × 106

Given that we only work with one-digit coefficients,
if the two exponents differ by two or more, then we
ignore the smaller number. If the exponents differ by
one, then the coefficient of the larger number will
change by at most one (e.g., 3 × 102 + 6 × 101 =
3.6 × 102 = 4 × 102). Addition and subtraction only
really matter when the exponents of the two numbers
are the same.

When we multiply two numbers, we simply multi-
ply the coefficients and add the exponents. Thus,

(7 × 106) × (3 × 104) = (7 × 3) × 106+4

= 21 × 1010

= 2 × 1011
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Similarly, when we divide two numbers, we will just
divide the coefficients and subtract the exponents:

7 × 106

3 × 104
= 7

3
× 106−4

= 2 × 102

or
3 × 104

7 × 106
= 3

7
× 104−6

= 0.5 × 10−2

= 5 × 10−3,

using the fact that 0.5 = 5 × 10−1 to go from the
second line to the third.

Note that we approximated 3/7 as 0.5. Actu-
ally, the correct answer is closer to 0.4, as 3/7 =
0.42857142857 . . . However, that is not worth worry-
ing about. Remember that we are just trying to esti-
mate closely enough to select one of the “Goldilocks”
categories. If we worry too much about arithmetic
precision, we’ll never estimate anything.

Dare to be imprecise!

A.2 Precision, Lots of Digits, and Lying

In this book we do almost all of our arithmetic using
only one digit (one significant figure). We do this to
simplify the math and to avoid lying about our results.
Both are important.

When some number in the news sets off our BS
detectors, we should be able to check that number
by estimation. We can only do that if we keep the
numbers simple. At worst, we need a pencil and cock-
tail napkin to keep track of exponents and one-digit
coefficients. At best, we would need a computer to
calculate exponents and five-digit coefficients.
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Yes, numbers with more digits are more precise.
However, precision is not accuracy. Let’s go to a rifle
range. Accuracy means that the average location of
all of our shots is in the bull’s-eye; precision means
all of our shots hit close together. If all our shots hit
the bull’s-eye, then our shooting is both precise and
accurate. If all of our shots cluster in a dime-size hole
far from the bull’s-eye, then our shooting is precise
but not accurate. If all of our shots are centered on
the bull’s-eye but evenly distributed over the entire
target, then our shooting is accurate (on average) but
not precise.

Because we are only trying to estimate within a
factor of ten, our estimates fall, at best, into the third
category of accurate but not precise. For example,
we estimated that students spend between 2 minutes
and 3 hours per day using their cell phones, giving a
geometric mean of 20 minutes per day. As we would
not be surprised if the correct average was 10 or 60
minutes, our estimate could easily be off by a factor
of three. Therefore, it would be very silly of us to
write

t =
√
(2min)(3 hrs) =

√
(2min)(180min)

= 18.9737min,

when none of the digits after the decimal point mean
anything. Not only would we be wasting time, we
would also be wrong.

Reporting lots of digits implies lots of certainty
about the final answer. This is certainty we certainly
do not have. For example, if a friend tells us that a nifty
accessory costs $20, then we expect that the price is
somewhere between $15 and $25, and we would bring
enough cash. If our friend tells us that the accessory
costs $19.17 including tax, then we could confidently
go to the store with only a $20 bill, knowing that the
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cost was very close to the stated amount. More digits
implies more certainty.

Similarly, a new tire might be advertised to have
a 40,000-mile lifetime. That imprecision reflects the
wide range of driving styles and driving conditions. It
would be most peculiar to see a tire with an advertised
lifetime of 38,769.3172 miles. That last digit implies
that the tire’s lifetime is known to within 6 inches.

Alternatively, suppose that we ask an astronomer
how far the Whirlpool Galaxy is from the Earth, and
she replies that it is 23 million and one (23,000,001)
light-years away. When we ask how she knows the
distance so precisely, she responds that many years
ago it was 23 million light-years away, but that it
is receding from us at high speed.* Her answer is
very misleading; it implies that astronomers have
measured that distance to extraordinary precision. In
reality, the distance is only known to within 4 million
light-years.

Thus, when we estimate a number, we will only
calculate one digit of the coefficient. More precise
calculations are both unnecessary and dishonest.

A.3 Numbers and Units

You may have noticed that I am using scientific
notation and working in the metric system. The pizza
box problem in the first chapter clearly demonstrated
the advantage of the metric system. We converted the
area of the pizza box from square meters to square
kilometers. Had we worked in U.S. customary units,
we would have had to convert from square inches to

* The Whirlpool Galaxy is actually receding from the Earth at a
little more than 0.1% of the speed of light, so it would take 1,000
years for it to recede by an entire light-year. Please pardon the
dramatic liberty.
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Table A.1
Approximate Conversion Factors

Quantity Metric unit U.S. customary equivalent

Length 1 meter (m) 3 feet
Length 103 m (1 km) 0.6 miles
Length 0.01 m (1 cm) 0.4 inches
Area 1 m2 10 feet2 (10 square feet)
Area 1 km2 0.4 mile2

Volume 1 liter (L) 1 quart
Volume 1 cubic meter 250 gallons or 103 liter
Mass 1 kilogram (kg) Mass of 2 pounds (lb)
Mass 103 kg 1 ton
Weight 1 newton (N) 0.2 lb
Speed 1 m/s 2 mph
Time π × 107 s 1 year

Note: These conversions from the metric system to U.S. customary
units (and other useful conversions) are approximations. If you
need more precision, look them up elsewhere.

square feet to square miles, using complicated conver-
sion factors at each step.

The main difficulty with this, of course, is that most
of us think in customary units. This means that we
will need to convert from customary units to metric
at the beginning of each problem and convert back at
the end. To do this, we will need to know a few useful
conversion factors, like the ones listed in table A.1.

Even with the headache of switching back and forth
from customary units to metric, it is frequently much
easier to do the calculations in the metric system.
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Appendix B
Pegs to Hang Things On

These tables have been reprinted from Guesstimation.

Length in meters (m) Object

1011 Earth-Sun distance (1.5×
1011m)

107 (104 km) Earth’s diameter (8,000 miles,
or 1.3 × 104km)

106 (103km) Distance from New Orleans
to Detroit (1,600 km)

105 (102km) Lake Michigan (length)
104 (10 km) Mt. Everest (height)
103 (1 km; 0.6 mil) George Washington Bridge
102 Football field (length)
101 Tennis court
100 Tall man’s stride
10−1 (10 cm) Person’s hand (width)
10−2 (1 cm) Sugar cube
10−3 (1 mm) Coin (thickness)
10−4 Human hair (thickness)
10−5 Human cell (diameter)
10−6 (1 micron [1 µm]) Soap-bubble film

(thicknes)
10−9 (1 nanometer [1 nm]) Small molecule
10−10 Atom

347



Area in square meters (m2) Typical object

1014 Land area of the Earth
1012 Egypt; Texas
1011 New York State; Iceland
109 Los Angeles; Virginia Beach
108 Manhattan
106 (1 km2) City of London
104 Football field
102 Volleyball court
100 Small office desk
10−4 (1 cm2) Sugar cube (one side only)
10−6 (1 mm2) Head of a pin
10−8 Pixel on computer display

Density in kilograms
per cubic meter (kg/m3) Item

1018 Neutron star; atomic
nucleus

109 White dwarf star
104 Lead; iron
103 (1 ton/m3, Water; human body
1 kg/L, 1 g/cm3)
100 Earth’s atmosphere at sea level

Mass in kilograms (kg) Object

1030 The Sun
1027 Jupiter
1025 Earth
1021 Earth’s oceans
1018 Earth’s atmosphere
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Mass in kilograms (kg) Object

1015 World coal reserves (estimated)
1012 World oil production in 2001
1011 Total mass of human world

population
1010 Great Pyramid of Giza
109 Matter converted into energy by the

Sun each second
108 Aircraft carrier
107 RMS Titanic
106 Launch mass of the space shuttle
105 Largest animal, the blue whale
104 Large elephant
103 (1 ton) Automobile (small)
102 Lion; large human
101 Microwave oven; large cat
100 1 liter or quart of water
10−1 Human kidney; apple; rat
10−2 Lethal dose of caffeine; adult mouse;

large coin
10−3 (1 g) Sugar cube
10−4 Caffeine in a cup of coffee
10−6 (1 mg) Mosquito
10−7 Lethal dose of ricin
10−9 (1 µg) Sand grain (medium)
10−12 (1 ng) Human cell
10−27 Neutron; proton; hydrogen atom
10−30 Electron

349





Bibliography

[1] G. Bowley. U.S. markets plunge, then stage a rebound.
New York Times, May 7, 2010.

[2] W. Poundstone. HowWould You Move Mount Fuji?
Little, Brown, New York, 2003.

[3] N. Carlson. 15 Google interview questions that will
make you feel stupid. Business Insider, 2009.
http://www.businessinsider.com/15-google-interview-
questions-that-will-make-you-feel-stupid-2009-11.

[4] D. Adams. The Hitchhiker’s Guide to the Galaxy. Pan
Books, London, 1979.

[5] M. H. Abrams and G. Harpham. A Glossary of Literary
Terms. Wadsworth Publishing, Boston, 2008.

[6] Crow calls for limit on loo paper. BBC News, April
2007. http://news.bbc.co.uk/2/hi/6583067.stm.

[7] Federal Reserve Bank. Money stock measures, 2010.
http://www.federalreserve.gov.

[8] L. Weinstein and J. Adam. Guesstimation: Solving the
World’s Problems on the Back of a Cocktail Napkin.
Princeton University Press, Princeton, NJ, 2008.

[9] Dr. Seuss. The Cat in the Hat. Random House,
New York, 1957.

[10] NFPA 1710: Standard for the organization and
deployment of fire suppression operations, emergency
medical operations, and special operations to the
public by career fire departments. Technical report,
National Fire Protection Association, Quincy, MA,
2010.

[11] Ambulance fact sheet. Technical report, American
Ambulance Association, 2004.
http://www.the-aaa.org.

[12] Snopes.com. Piscine of the crime, 2000.
http://www.snopes.com/science/poolpiss.asp.

[13] R. Iliev, S. Sachdeva, and D. Medin. Sinning saints and
saintly sinners: The paradox of moral self-regulation.
Psychological Science, 20:523, 2009.

351



[14] N. Mazar and C. Zhong. Do green products make us
better people? Psychological Science, 21:494, 2010.

[15] M. S. Rosenwald. Why going green won’t make you
better or save you money.Washington Post, July 16,
2010. http://www.washingtonpost.com/wp-dyn/
content/article/2010/07/16/AR2010071606839.html.

[16] Resin pricing—recycled plastics, 2010.
http://plasticsnews.com/resin-pricing/recycled-
plastics.html.

[17] Statistical Abstract of the United States. Technical
report, U.S. Census Bureau, 2010.
http://www.census.gov/compendia/statab.

[18] R. K. Iler. The Chemistry of Silica. Plenum Press,
New York, 1979.

[19] C. Edwards and J. M. Fry. Evidence, life cycle
assessment of supermarket carrier bags. Technical
Report SC030148, Environment Agency, London,
2011.

[20] D. Williams, C. P. Gerba, and R. G. Sinclair.
Assessment of the potential for cross-contamination
of food products by reusable shopping bags. Technical
report, University of Arizona and Loma Linda
University, Tucson, AZ, 2010.

[21] Climate maps of the United States. Technical report,
National Climatic Data Center, U.S. Department of
Commerce, Washington, DC, 2005.
http://www.ncdc.noaa.gov/oa/ncdc.html.

[22] Man-systems integration standards. Technical report
NASA-STD-3000, NASA, Houston, TX, 1995.
http://msis.jsc.nasa.gov.

[23] T. Robbins. The pedal-powered hotel. Guardian, April
14, 2010. http://www.guardian.co.uk/travel/2010/apr/
14/hotel-with-electricity-generating-exercise-bikes.

[24] E. Fermi. Trinity test, July 16, 1945, eyewitness report.
Technical report, RG 227, OSRD-S1 Committee, box
82 folder 6, U.S. National Archives, Washington, DC,
1945. http://www.nuclearfiles.org/menu/key-
issues/nuclear-weapons/history/pre-cold-
war/manhattan-project/trinity/eyewitness-enrico-
fermi_1945-07-16.htm.

352 Bibliography



[25] Kenworth Truck Company. White paper on fuel
economy. Technical report, 2008. http://www.
kenworth.com/FuelEconomyWhitePaper.pdf.

[26] N. Kondamudi, S. K. Mohapatra, and M. Misra. Spent
coffee grounds as a versatile source of green energy.
Journal of Agriculture and Food Chemistry, 56:11757,
2008.

[27] N. Juster. The Phantom Tollbooth. Knopf, New York,
1961.

[28] T. P. Andert et al. Precise mass determination and the
nature of Phobos. Geophysical Research Letters,
37:L09202, 2010.

[29] K. Koziol et al. High-performance carbon nanotube
fiber. Science, 318:1892, 2007.

[30] V. F. Weisskopf. Search for simplicity: Mountains,
waterwaves and leaky ceilings. American Journal of
Physics, 54:110, 1986.

[31] A. Savage and J. Hyneman.Mythbusters episode, 2008.
[32] C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W.

Kruse, and A. D. McGuire. Detection of the free
neutrino: A confirmation. Science, 124:103, 1956.

[33] Centers for Disease Control and Prevention.
Emergency preparedness and response: Acute
radiation syndrome. http://www.bt.cdc.gov/
radiation/arsphysicianfactsheet.asp.

353





Index

air resistance. See force
airplane, 197, 201
aluminum, 75
ambulances, 49
angular momentum, 263, 273,

277, 283
Earth, 271
Moon, 281

antenna, 125
aperture, 116, 117, 121, 125
atmosphere, 19, 122
atomic bomb test, 169
automobile, 81, 181, 205, 209,

213, 217, 219

baby
tidal forces on, 237

bacteria, 331
bag
paper, 79
plastic, 79

baseball, 33
beanstalk, 295
bedroom, 21
beer, 33
bicycle, 189
biodiesel, 209, 213
bolt, 299
bottle
beer, 71
glass, 71
plastic, 67
water, 67

brains, 53
bridge, 55
George Washington, 41
Golden Gate, 55

building, 25
bullet, 307

camera, 121
can

aluminum, 75
candle, 95, 109
car, 181

mousetrap, 155
pushing, 159

Cat in the Hat, The, 45
cell

cone, 114
rod, 114

cell phone, 4, 37
CFL, 95
Chesapeake Bay, 91
coffee grounds, 213
computers, 45
conservation

angular momentum, 263
energy, 263

coprolites, xiii
cosmic rays, 312, 331
cross section, 312

day, 229, 283
day length

meteorite impact, 273
supervolcano, 277

diffraction, 114, 117, 121,
125

DNA, 331
dollars, 17, 19, 29
doughnuts, 209
dynamic range, 107, 135

355



ear, 131
Earth, 19, 227, 229, 233, 273,

277, 283, 295
angular momentum, 271
mountain, 303
radius, 20
tides, 233

energy, 64–66, 67, 71, 75, 95,
125, 140–1, 143, 145, 149,
159, 161, 165, 169, 174-5,
177, 219, 245, 312-4, 323,
327, 335, 337

airplane, 197, 201
bicycle, 189
car, 159, 181, 205, 209, 217
chemical, 290, 303, 307
coffee grounds, 213
cooking oil, 209
food shipping, 219
gravitational, 245, 249, 253,

257, 303
kinetic, 217, 245
mousetrap, 155
nut, 153
solar, 205
train, 193
truck, 185

escape velocity, 245
eye, 103, 105, 109, 113, 117

fission, 313, 315
force, 135, 140-1, 153, 155,

159, 161, 165, 169, 299
air resistance, 174-5, 181,

185, 189, 193, 217
centripetal, 224-5, 241, 283,

295
circular, 224-5
gravitational, 224-5, 229,

295

interatomic, 290, 291
tidal, 233, 237, 241, 283

foul ball, 33
fuel

diesel, 209, 213
fusion, 313, 323

galaxy, 337
garbage, 64, 73
George Washington Bridge, 41
glass, 33, 64, 71
gold, 29
Golden Gate Bridge, 55
Goldilocks, 2, 3, 6, 123, 174,

298, 343
Google, xiii, xiv
gravity, 136, 224-5, 229, 235-6,

285-6, 296-7

Hamlet, 45
humans, 64, 146, 177

impact, 273
ink printer, 29
interaction length, 312-3,

319

jump, 245

landfill, 42, 64, 69
letters, 45, 121
license plate, 121
light, 19, 103, 105, 109, 113,

117, 257
compact fluorescent, 95
incandescent, 95
LED, 95

light bulb, 65, 95, 146

Mars, 257
mountain, 303

356 Index



mass, 29, 53, 65, 67, 71, 75, 79,
83, 135, 140, 143, 149,
155, 159, 197, 201, 217,
224-5, 229, 233, 237, 241,
245, 249, 253, 257, 263-5,
267, 271, 273, 277, 281,
295, 303, 307, 319

material, 65, 72, 76, 84, 278,
290

strength, 291, 295, 299
mean, geometric, 5-6, 7, 8,

9, 27, 31, 34, 35, 38, 39,
42, 47, 54, 62, 68, 69, 81,
92, 93, 97, 126, 127, 128,
136, 144, 150, 154, 178,
191, 194, 198, 206, 210,
211, 220, 238, 239, 246,
259, 278, 298, 316, 320,
344

mean free path, 313
meteorite, 265, 273, 278
microwaves, 125
miles per gallon, 70, 157, 177,

187, 210, 220
monkeys, 45
Moon, Earth’s, 128, 141, 224,

225, 283
angular momentum, 2
split, 253
tides, 233, 237

moon, other, 245
split, 257

mountain, 27, 303
mouse trap, 155
movie theater, 21, 53
Mt. Everest, 25, 140, 304-5

neutrino, 312-5, 319, 323,
327

neutron star, 241, 249, 267
Niagara Falls, 149

nuclear energy, 169, 313, 315,
319

nut, 153

obstetrician
tides, 237

oil
cooking, 209

optical resolution, 113, 117,
121

orbit, 224-5, 227, 233, 241,
273, 281, 283, 295

geostationary, 125, 295
low Earth, 121

oyster, 91

paper
toilet, 13

“paper or plastic?” xii, xv, 3, 79
pee, 59, 201
people, 37, 55, 145, 177
perfume, 29
Phobos

split, 257
phone

cell, 5, 37
pixel, 114, 122
pizza, 7
planet, 117, 224-5, 237, 257
pool, 59, 195, 202
popcorn, 21, 127
power, 65, 95, 103, 105, 109,

125, 141, 155, 177, 205,
252, 254, 258

arithmatic, 5, 46, 174, 341
hydroelectric, 149
nuclear, 315, 319
running, 143
solar, 2, 104, 125, 205, 258,
323

treadmills, 145

357



pressure, 161, 165, 169
printer ink, 29
Prius, 205
proton, 312-3, 324, 335, 337
pupil, 103, 109, 115

radiation, 171, 312-4, 327, 335,
337

gray, 314
rad, 314

radioactivity, 312
rain, 87
random, 45
recycle, 64, 67, 71, 75, 83
relativity, 337
resolution
angular, 113, 117, 121, 131

Roche’s Limit, 233, 283
roof, 87, 206
rotation, 224, 263-5, 267, 279,

288
rotational inertia, 263-5, 267,

271, 277
rotational velocity, 263-5, 271
rush hour, 41

sand, 64, 72
satellite, 122, 125, 224, 285
Saturn, 237
Shakespeare, 45
shipping, 219
solar neutrinos, 323
solar power, 2, 104, 125, 205,

258, 323
space travel, 337
spin, 263-5, 271
stairs, 143
star, 117, 253, 327, 338
neutron, 241, 249

strength, 291, 295, 299

Sun, 19, 96, 103, 227, 238, 249,
263, 267, 274, 313, 323,
327

supernova, 327
swimming pool, 59

telescope, 117
tidal forces, 225, 234-5, 237,

241, 284, 288
tides, 224-5, 233, 283, 288
Tides, Norfolk, 33
toilet paper, 13
toll plaza, 41
tomato, 219
touch, 135
traffic, 7, 42, 56-7
train, 174, 175, 193
transport, 7, 69, 174-5, 219

airplane, 197, 201
bicycle, 189
car, 181
train, 193
truck, 185

tree, 307
trillion, xiv, 14, 17, 19, 29, 341
Trinity test, 169
truck, 185
typing, 45

urine, 59, 201

vacuum
interstellar, 337

video games, 8
volcano

super, 277
volume, 21, 25, 29, 53, 59, 80,

84, 87, 91, 136, 156, 161,
165, 169, 202, 246, 255,
297, 308, 320, 333, 338,
346

358 Index



walking, 70, 160, 177
water, 54, 60, 62, 65, 67, 72, 81,

85, 87, 91, 149, 220, 312,
313, 320, 339

wavelength, 96, 98, 99,
107, 114, 116, 125,
133

weight, 76, 135, 143, 170,
182, 186, 191, 199, 202,

220, 242-3, 291, 295,
304, 346

work, 69, 85, 140-1, 153, 155,
159, 292

bicycle tire inflation, 165
car tire inflation, 161
explosion, 169

Yellowstone, 277

359


	Cover
	Halftitle
	Title
	Copyright
	Dedication
	Contents
	Acknowledgments
	Preface
	1 How to Solve Problems
	2 General Questions
	2.1 Who unrolled the toilet paper?
	2.2 Money height
	2.3 Blotting out the Sun
	2.4 Really extra-large popcorn
	2.5 Building volume
	2.6 Mass of money
	2.7 A baseball in a glass of beer
	2.8 Life on the phone
	2.9 Money under the bridge
	2.10 Monkeys and Shakespeare
	2.11 The titans of siren

	2.12 Airheads at the movies
	2.13 Heavy cars and heavier people
	2.14 Peeing in the pool

	3 Recycling: What Really Matters?
	3.1 Water bottles
	3.2 99 bottles of beer on the wall . . .
	3.3 Can the aluminum
	3.4 Paper or plastic?
	3.5 Paper doesn’t grow on trees!
	3.6 The rain in Spain . . .
	3.7 Bottom feeders
	3.8 You light up my life!

	4 The Five Senses
	4.1 Don’t stare at the Sun
	4.2 Men of vision
	4.3 Light a single candle
	4.4 Oh say can you see?
	4.5 Bigger eyes
	4.6 They’re watching us!
	4.7 Beam the energy down, Scotty!
	4.8 Oh say can you hear?
	4.9 Heavy loads

	5 Energy and Work
	5.1 Power up the stairs
	5.2 Power workout
	5.3 Water over the dam
	5.4 A hard nut to crack
	5.5 Mousetrap cars
	5.6 Push hard
	5.7 Pumping car tires
	5.8 Pumping bike tires
	5.9 Atomic bombs and confetti

	6 Energy and Transportation
	6.1 Gas-powered humans
	6.2 Driving across country
	6.3 Keep on trucking
	6.4 Keep on biking
	6.5 Keep on training
	6.6 Keep on flying
	6.7 To pee or not to pee
	6.8 Solar-powered cars
	6.9 Put a doughnut in your tank
	6.10 Perk up your car
	6.11 Don’t slow down
	6.12 Throwing tomatoes

	7 Heavenly Bodies
	7.1 Orbiting the Sun
	7.2 Flying off the Earth
	7.3 The rings of Earth
	7.4 It is not in the stars to hold our destiny
	7.5 Orbiting a neutron star
	7.6 How high can we jump?
	7.7 Collapsing Sun
	7.8 Splitting the Moon
	7.9 Splitting a smaller moon
	7.10 Spinning faster and slower
	7.11 Shrinking Sun
	7.12 Spinning Earth
	7.13 The dinosaur killer and the day
	7.14 The Yellowstone volcano and the day
	7.15 The orbiting Moon
	7.16 The shortest day

	8 Materials
	8.1 Stronger than spider silk
	8.2 Beanstalk to orbit
	8.3 Bolt failure
	8.4 Making mountains out of molecules
	8.5 Chopping down a tree

	9 Radiation
	9.1 Nuclear neutrinos
	9.2 Neutrinos and you
	9.3 Solar neutrinos
	9.4 Supernovas can be dangerous
	9.5 Reviving ancient bacteria
	9.6 Decaying protons
	9.7 Journey to the center of the galaxy

	Appendix A: Dealing with Large Numbers
	A.1 Large Numbers
	A.2 Precision, Lots of Digits, and Lying
	A.3 Numbers and Units

	Appendix B: Pegs to Hang Things On
	Bibliography
	Index



